
Python Garbage Collector Implementations
CPython, PyPy and GaS

Thomas Perl <e0725603@student.tuwien.ac.at>
Seminar on Garbage Collection WS2011/12, TU Wien

January 22, 2012

Abstract

Python is a dynamic language with multiple implementations that
utilize different garbage collection mechanisms. This paper compares
CPython with PyPy and highlights differences in behavior caused by
different GCs. Section 1 discusses Python in general, sections 2 and
3 introduce the garbage collectors of CPython and PyPy. The dif-
ferences in behavior are discussed in section 4 with examples. An
alternative to implementing new GCs in high-level languages (PyPy’s
approach) is using an external library (GaS, section 5).

1 Introduction to the Python language

Python1 was created by Guido van Rossum in 1989. Multiple implementa-
tions of Python exist today, with CPython (written in the C programming
language) being the reference implementation.

In recent years, other implementations were developed by the community:
Jython (1997) is a Python compiler written in Java and targetting the Java
VM, followed by IronPython (2006), an implementation of Python for the
Common Language Infrastructure (.NET) and most recently PyPy (2007),
written in RPython (a restricted subset of Python).

PyPy’s code can be ran as-is on top of CPython or translated to lower-
level runtimes such as POSIX (C runtime) or .NET.

1http://www.python.org/

1

Several modifications to CPython have also been developed in recent
years: Stackless Python (2000) does not depend on the C call stack, but
uses a separate call stack instead. Psyco (2003) is a JIT for Python for
the x86 architecture. Unladen Swallow (2009) adds a JIT using LLVM to
Python 2.6.

The CPython implementation utilizes a global interpreter lock (GIL) to
synchronize interpreter access – Tabba[3] experimented with adding concur-
rency to Python using transactional memory support in hardware, and also
considered garbage collection-related limitations.

2 Garbage Collection in CPython

Reference counting CPython 1.x used only reference counting for garbage
collection. While reference counting is easy to implement and understand,
it is not able to detect reference cycles. A cyclic garbage collector has been
developed in 1999 and is shipped with Python since version 2.0.

Current status CPython uses reference counting and a generational garbage
collector to detect cyles in the current version2. Due to reference-counting,
a file can be written and closed in one statement without explicitly closing
it. This works because the file is flushed and closed as soon as the refcount
of the file object (the return value of the open() function) becomes zero:

open (’ t e s t . txt ’ , ’w ’) . wr i t e (’ h e l l o world ’)

This, however, won’t work in other Python implementations like Jython,
IronPython or PyPy, because their garbage collectors will finalize and dispose
the file object at some future time (collection time), and only then will the
buffers of the file be flushed and the file closed.

To avoid this problem, either explicitly close the file object after writing:

Close the f i l e e x p l i c i t l y with . c l o s e ()
fp = open (’ t e s t . txt ’ , ’w’)
fp . wr i t e (’ h e l l o world ’)
fp . c l o s e ()

or implicitly close the file with a context manager3:

2Python 3.2.2, released September 4, 2011.
3http://www.python.org/dev/peps/pep-0343/

2

Use a context manager (PEP 343)
with open (’ t e s t . txt ’ , ’w’) as fp :

fp . wr i t e (’ h e l l o world ’)

In both situations, the file object will still only be collected and finalized
at some unknown collection time in the future, but it will be closed/flushed
at a known point in our code. Both methods also work in CPython.

One might consider the reference-counting nature of CPython useful in
some cases, because the developer can be sure that the object is freed as soon
as possible. This might also be an advantage in low-memory situations and
on embedded or mobile devices.

3 PyPy’s Garbage Collection Framework

The PyPy project has developed a ”Garbage Collection Framework”[2], which
allows Garbage Collection algorithms to be written in a high-level (itself
garbage-collected) language and translated into low-level languages like C.
This translation has several advantages compared to writing such a virtual
machine by hand[1]. PyPy’s GCs are written in RPython.

Using high-level languages is just one approach how the development of
GCs for existing languages can be simplified – another approach by Wegiel
and Krintz[4] will be introduced in section 5.

At translation time, the user can choose between different implemen-
tations4 to be compiled into the resulting Python interpreter, e.g. Mark
and sweep (classic mark-and-sweep implementation), Semispace copying
(two-arena garbage collection, copying of alive objects into the other arena
happens when the active arena is full), Generational GC (implemented as a
subclass of the Semispace copying GC, this one adds two-generation garbage
collection to distinguish between short-lived and long-living objects), Hy-
brid GC (adding another generation to handle large objects), Mark &
Compact GC (with in-place compaction to save space, but using multiple
passes) and the Minimark GC (a combination of the previous methods,
rewritten and with a custom allocator).

In addition to the garbage collection framework, PyPy’s flexible transla-
tion infrastructure allowed the authors to add support for the Boehm GC

4the list of garbage collection algorithms available in PyPy can be found at
http://codespeak.net/pypy/dist/pypy/doc/garbage collection.html

3

and for a reference-counted (but without cycle detection/collection) memory
management option5.

4 Cycles, Finalizers and Uncollectables

Cycle A reference cycle is a cycle of references where a set of objects only
has references from inside the set (with each object having a reference count
> 0) and no references from the outside. Such objects are not reachable from
the outside – they should be freed. Reference counting can’t handle cycles:

c l a s s X:
de f i n i t (s e l f) :

s e l f . o ther = None

a , b = X() , X() # Refcounts are now 1
a . other = b ; b . other = a # Refcounts are now 2
de l a , b # Refcounts are now 1

After the del statement, a and b are not reachable, but their reference
count is nonzero, so they can’t be freed by reference counting alone.

Finalizer A finalizer in Python (the del (self) method) is like a de-
structor in C++ (but never called explicitly) or finalize() in Java. When
the object is about to be freed (when its reference count goes down to zero
or the GC collects it), the finalizer is called to clean up.

Uncollectables Reference counting can’t detect cycles. For this, another
garbage collection mechanism is needed. The generational garbage collector
in Python 2 and 3 solves this problem by breaking the cycle at some random
point – this only works fine as long as no finalizers need to be called.

Objects in a cycle that has a finalizer will never be collected by the
CPython garbage collector, because breaking the cycle modifies object state.
Uncollectable objects will appear in the gc Python module as gc.garbage:

import gc

c l a s s X:

5http://codespeak.net/pypy/dist/pypy/doc/translation-aspects.html

4

de f i n i t (s e l f) :
s e l f . o ther = None

de f d e l (s e l f) :
p r i n t ’DEL! ’ , s e l f

a , b = X() , X()
a . other = b ; b . other = a
de l a , b
gc . c o l l e c t () ; gc . c o l l e c t ()
p r i n t gc . garbage

This will print the following in CPython 2.7.26 on an amd64 machine:

[< main .X in s t ance at 0 x7f f5474933b0 >,
< main .X in s t ance at 0 x7 f f5474933 f8 >]

Running the same example on PyPy 1.77 yields a different result:

DEL! < main .X in s t ance at 0 x00007fb2c4f09260>
DEL! < main .X in s t ance at 0 x00007fb2c4f09280>
[]

We observe that Python implementations with distinct GCs behave dif-
ferently: CPython does not even try to get the order of finalizers right, and
simply puts uncollectable objects into the global list of garbage for the de-
veloper to deal with manually.

PyPy (with the default GC mechanism “Minimark”) provides a “at most
once” call guarantee for the finalizer (CPython does not provide such a guar-
antee at all, not even “at least once”), i.e. the finalizer of any object is called
at most once, even if the object is later reincarnated (e.g. by leaking a global
reference to self in the finalizer). This works because the other object still
has a reference to the first object when the finalizer of the first object is
called (one could view this as “automatic reincarnation”).

Because a finalizer is called at most once, however, the cycle can be
removed by simply calling each finalizer once and (after all finalizers in the
cycle have been called) freeing the memory of the objects in the cycle (without
calling any finalizer).

6Python 2.7.2-9 from Debian Testing
7Binary from https://bitbucket.org/pypy/pypy/downloads/pypy-1.7-linux64.tar.bz2

5

Figure 1: Architecture of the GC-as-a-Service library (Source: [4])

The reason why the problem of ordering finalizers is easier to solve in
PyPy and not solved in CPython is because the ordering of is more strict
and difficult in a mixed reference counting / cycle detection environment
than it is in the non-reference-counted garbage collector of PyPy.

5 Garbage Collection as a Service

As we have seen, the high-level description of GCs in PyPy can provide ad-
vantages for both developers and users. However, it’s not the only approach
to save time implementing experimental garbage collectors.

In [4], Wegiel and Krintz discuss their GC-as-a-Service (GaS) garbage
collection library (figure 1). The idea is to implement a state-of-the-art
concurrent and cooperative garbage collector in a library, with a pre-defined
interface that runtimes such as the Java VM, Python VM or Ruby VM can
hook into. The garbage collector is non-moving, which means that it supports
VMs which assume that objects cannot be moved in memory.

While [1] suggests that one way to implement VMs in an efficient way is to
translate high-level languages into lower-level ones, and describe components
such as garbage collectors in high-level languages, GaS[4] goes a different
route and tries to move the GC logic into a modular library. This also
facilitates code reuse, but currently only allows one garbage collector to be
utilized, and GaS is not written in a high-level language, which makes it
harder to check and implement compared to translation methods as in [2].

GaS is implemented as four-phase GC, where all phases run concurrently:

6

flag clearing, root dump, object marking and object sweeping. Because the
Python integration of GaS uses CPython, GaS has to take reference counting
into account, and does so by making the incref and decref operations con-
ditional, and avoids reference counts to objects allocated on the GaS heap.

GaS’s Python integration was done on top of CPython 3.1, and only the
implementation of the binary search tree was evaluated. The findings of the
experiments were that GaS requires larger heap sizes and also adds some
runtime overhead compared to the original GC implementation.

6 Conclusions

The research project PyPy includes a framework for experimenting with dif-
ferent garbage collection algorithms that are more sophisticated than the GC
implemented in CPython. An alternative to the high-level GC framework
of PyPy is GaS, a pluggable GC library.

A short overview of the different garbage collection algorithms in PyPy
was given, followed by an example analysis of different behaviors. CPython
and PyPy have different semantics and guarantees when and how often the
finalizer is called on an object.

Conclusion 1 For historic and practical reasons, implementations of Python
have different behaviors and semantics when it comes to garbage collection
and finalizers. Developers writing portable code have to be aware of these,
and must not rely on implicit behavior of any single implementation.

Conclusion 2 To simplify the development of new garbage collectors for
existing languages, garbage collectors can be written in high-level languages
and translated to a target runtime (PyPy’s approach) or written as external
library providing specified interfaces to VMs (GaS’ approach).

References

[1] C. F. Bolz and A. Rigo. How to not write virtual machines for dynamic
languages. In Proceeding of Dyla, 2007.

7

[2] C. F. Bolz and A. Rigo. IST FP6-004779: researching a highly flexible
and modular language platform and implementing it by leveraging the
open source python language and community, 2007.

[3] F. Tabba. Adding concurrency in python using a commercial processor’s
hardware transactional memory support. SIGARCH Comput. Archit.
News, 38:12–19, April 2010.

[4] M. Wegiel and C. Krintz. Concurrent collection as an operating system
service for cross-runtime cross-language memory management, 2010.

8

