
Cross-Platform Tracking of a
6DoF Motion Controller

Using Computer Vision and Sensor Fusion

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Thomas Perl

Matrikelnummer 0725603

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung: Priv.-Doz. Mag. Dr. Hannes Kaufmann, Assoc. Prof.

Wien, 09.12.2012

(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Cross-Platform Tracking of a
6DoF Motion Controller

Using Computer Vision and Sensor Fusion

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Thomas Perl

Registration Number 0725603

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Priv.-Doz. Mag. Dr. Hannes Kaufmann, Assoc. Prof.

Vienna, 09.12.2012

(Signature of Author) (Signature of Advisor)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Thomas Perl

1050 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-

ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -

einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im

Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-

lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

This thesis is dedicated to my parents, who fully supported me (financially and otherwise)

throughout my studies, so that I could focus on the important parts of university and real life.

A very special thank you to my supervisor Hannes Kaufmann, who was one of the initia-

tors of the MoveOnPC project, and who provided support, guidance and insightful feedback

throughout the implementation and writing phases of this thesis.

Special thanks to Benjamin Venditti, who did the initial implementation of the vision tracker

module during Summer of Code 2012. Special thanks also to Douglas Wilson for making use

of the library, providing feedback and testing during the early stages of the implementation with

Johann Sebastian Joust and the UniMove library.

Thanks also to the various people in and around the PS Eye and PS Move hacking commu-

nity, as well as people who developed libraries that are used in the PS Move API, or built libraries

and applications on top of the PS Move API (in alphabetical order): Pascal B. (linmctool), Vik-

tor Budaházi (Windows pairing), Raphaël de Courville (Processing bindings, iSight exposure),

Nicolas Devillard (iniparser), Jules Fennis (Processing bindings), Adam Henriksson (Edgar Rice

Frotteur), Patrick Jarnfelt (UniMove), justinb26 (Processing bindings), Martin Kaltenbrunner

(TUIO_CPP), Sebastian Madgwick (AHRS algorithm), Alexander Nitsch (MoveOnPC Wiki,

HID input report and calibration documentation), Alan Ott (hidapi and feedback on patches),

Jim Paris (PS Eye reverse engineering), Mikhail Sapozhnikov (psmoveinput driver) and Kenn

Sebesta (PS Move hardware hacking).

Thanks to the people who contributed patches to PS Move API in Git: Stefan Derkits, San-

tiago Ferreira, Fred Oliveira, Krisztián Szabó and Joshua Yanchar.

Thanks to Stefan Kögl and Martin Wieser for proofreading the drafts and providing useful

feedback, which has been integrated into the final version of this document.

Last but definitely not least, I’d like to thank Iris for always being there for me and providing

welcome distractions and support, as well as being understanding when deadlines and late-night

hack sessions occupied unusually large quantities of my free time.

Typeset in LATEX using Vim. Diagrams and illustrations created with LibreOffice and The

Gimp. The AOPATAD artwork by Richard Hogg (thanks!) is used with kind permission as the

PS Move API logo. Parts of the implementation of the PS Move API were sponsored by Google,

Inc. as part of Google Summer of Code 2012.

iii

Abstract

There is a lack of software for 6DoF (six degrees of freedom) tracking using affordable off-the-

shelf hardware. With the introduction of motion controllers in game consoles, the hardware is

easily available these days, but no fully-featured software solutions for 6DoF tracking exist.

This thesis introduces the PS Move API, a cross-platform open source library for multiple

programming languages that can be used to track multiple PS Move Motion Controllers via

Bluetooth and a USB 2.0 PS Eye camera. The library implements sensor fusion to track all six

degrees of freedom: 3-axis position and 3-axis rotation.

The library solves the problems of communicating with the controller via USB and Bluetooth

using the HID (Human Interface Device) protocol, pairing the controller with the host computer

(for Bluetooth connections) and connecting to the controller in a cross-platform manner.

Vision tracking is implemented using the freely available OpenCV framework and a PS Eye

camera (other cameras are supported as well). The PS Move Motion Controller has a sphere at

its top that can change its color using RGB LEDs - this is used to track the controller and to

distinguish between multiple controllers.

Orientation tracking is implemented using an open source AHRS (attitude heading refer-

ence system) algorithm, integrating inertial sensor readings from accelerometers, gyroscopes

and magnetometers into a quaternion representation, which describes rotations in 3D space.

Sensor fusion combines data from the visual and orientation tracking to get the controller

position and orientation relative to the camera position in world coordinates. This data can then

be used for different input mechanisms, such as augmented or virtual reality applications.

An easy-to-use API (application programming interface) is provided as part of the library

design, allowing quick prototyping and efficient implementation of solutions incorporating the

PS Move Motion Controller. Example applications and integrations into existing frameworks

such as TUIO and OpenTracker demonstrate different API use cases and validate the results of

the implementation.

v

Kurzfassung

Derzeit gibt es kaum Software für 6DoF (six degress of freedom, sechs Freiheitsgrade)-Tracking,

die sich erschwinglicher Off-the-Shelf-Hardware bedienen. Seit Konsolen-Hersteller in den letz-

ten Jahren vermehrt Motion-Controller in ihre Systeme integriert haben, gibt es ausreichend

Tracking-Hardware, aber keine vollständige Software-Lösung, um 6DoF-Tracking-Systeme zu

entwickeln.

Diese Diplomarbeit stellt das PS Move API vor, eine Cross-Platform Open Source Biblio-

thek für mehrere Programmierspachen, die es ermöglicht, mehrere PS Move gleichzeitig per

Bluetooth und einer USB 2.0 PS Eye-Kamera zu tracken. Die Bibliothek implementiert Sen-

sor Fusion, um alle sechs Freiheitsgrade zu tracken: 3 Achsen der Position und 3 Achsen der

Rotation.

Die Bibliothek löst das Problem der Controller-Kommunikation per USB und Bluetooth

mit Hilfe des HID (Human Interface Device)-Protokolls. Weiters wird auch das Pairing (Kop-

peln) des Controllers für Bluetooth-Verbindungen per USB und das Verbinden auf verschiedenen

Betriebssystem-Plattformen unterstützt.

Vision-Tracking wird mit Hilfe des frei verfügbaren OpenCV-Frameworks und einer PS Eye

Kamera implementiert - andere Kameras werden ebenfalls unterstützt. Der PS Move Motion-

Controller hat eine leuchtende Kugel an der Spitze, die mit RGB-LEDs ihre Farbe verändern

kann. Mit dieser Funktion kann man den Controller im Raum tracken, und eine Unterscheidung

zwischen unterschiedlichen Controllern treffen.

Das Tracken der Orientierung (Rotation) des Controllers ist mit Hilfe eines Open Source

AHRS (attitude heading reference system, Lageanzeigesystem) Algorithmus implementiert, der

die Informationen von Beschleunigungssensoren, Gyroskopen und des Magnetometers in eine

Quaternion-Repräsentation umrechnet. Diese Quaternion-Repräsentation beschreibt die Rotati-

on im 3D-Raum.

Sensor Fusion kombiniert die Resultate von Vision- und Orientierungs-Tracking, um eine

Controller-Position und -Orientierung relativ zur Kamera-Position in Welt-Koordinaten zu be-

kommen. Diese Daten können für verschiedenste Anwendungsgebiete, wie zum Beispiel Aug-

mented oder Virtual Reality, verwendet werden.

Das Hauptaugenmerk beim Design der Bibliothek liegt auf einer leicht zu verwendenden

Programmierschnittstelle (API), mit der man schnelle Prototypen und effiziente Lösungen ent-

wickeln kann, die den PS Move Motion Controller verwenden. Beispiel-Anwendungen und die

Integration in bestehende Frameworks, wie zB TUIO und OpenTracker zeigen unterschiedliche

Anwendungsfälle auf, und validieren die Ergebnisse der Implementierung.

vii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Aim of the Work . 1

1.3 Problem Statement . 2

2 Related Work 5

2.1 Intrinsic Camera Calibration . 5

2.2 Blob Tracking . 9

2.3 Inertial Sensors . 15

2.4 Sensor Fusion . 18

2.5 Existing Approaches . 23

3 Methodology 25

3.1 Hardware . 25

3.2 Features Overview . 28

3.3 Pairing Process . 29

3.4 Tracking Process . 30

3.5 Tracking Algorithms . 33

3.6 Distance Function . 40

3.7 End User Interaction . 42

3.8 Design Decisions . 46

4 Implementation 49

4.1 Architecture Overview . 49

4.2 Dependencies . 51

4.3 Public Modules . 53

4.4 Private Modules . 55

4.5 Language Bindings . 56

4.6 Build System . 62

4.7 The Move Daemon (moved) . 64

4.8 Controller Bluetooth Pairing via USB . 65

4.9 Camera Detection and Configuration . 70

ix

5 Results 73

5.1 Evaluation Setup . 73

5.2 Capture and Tracking Performance . 74

5.3 Inertial Sensor Read Performance . 77

5.4 End-to-End System Latency . 81

5.5 Performance Impact of ROI Size . 84

5.6 Sphere Detection in Motion Blur Situations 86

5.7 Example Applications . 87

5.8 Integration with Other Frameworks . 92

5.9 Performance and Limits Summary . 96

6 Summary and Future Work 97

6.1 Implemented Features . 97

6.2 Discussion of Open Issues . 99

6.3 Future Work . 101

6.4 Resources on the Internet . 104

A Library API Documentation 105

A.1 Core Module (psmove.h) . 106

A.2 Tracker Module (psmove_tracker.h) . 115

A.3 Sensor Fusion Module (psmove_fusion.h) . 121

B Low-Level HID Protocol 123

C Move Daemon UDP Protocol 127

Bibliography 131

x

CHAPTER 1
Introduction

1.1 Motivation

Nowadays, integration of 3D user input into Virtual Reality applications and games is restricted

by the availability of affordable hard- and software. In recent years, new motion controllers

designed for use in game consoles have been released. These controllers are affordable and

widely available.

In 2010, Sony released their Playstation Move Motion Controller. The controller is initially

paired with a host computer using USB, the communication can happen via USB or Bluetooth.

Given a suitable camera (for example the PS Eye USB 2.0 camera used with the Playstation

3 system), computer vision can be used to calculate the controller’s 3D position relative to the

camera position by setting the color of the glowing orb built into the controller.

Using additional data from the inertial sensors (accelerometer, gyroscope and magnetome-

ter) built into the controller and accessible via Bluetooth, the data obtained via computer vision

can be augmented for high-quality tracking data.

1.2 Aim of the Work

The goal of this work was the development of a library (PS Move API) that can be used on

multiple operating systems to communicate with the PS Move Motion Controller. The library

provides an easy-to-use API, abstracting away implementation details and operating system dif-

ferences.

The solution allows application developers on different platforms (Linux, Mac OS X and

Windows) to read the calibrated and preprocessed 3D position of the Move controller and access

raw sensor data on a lower level.

These features are made accessible via a low-level C API for integration into existing solu-

tions, as well as a high-level API in a higher, dynamic programming language for quick proto-

typing of new solutions.

1

The tracking method works with at least two controllers simultaneously, as this is required

for some more advanced 3D position tracking applications.

Parts of the implementation of this project were carried out during Google Summer of Code

2012 by Benjamin Venditti and me. Summer of Code was funded by Google Inc., Vienna Uni-

versity of Technology was the mentoring organization.

1.3 Problem Statement

This section lists high-level tasks solved by the PS Move API implementation.

HID Communication

The PS Move Motion Controller acts as a Human Interface Device (HID, specified in [9]) and

can be enumerated when connected via USB. Communication is done using custom HID mes-

sages. The structure of the reports has been analyzed by projects such as MoveOnPC [5].

Pairing

To communicate via Bluetooth, the controller needs the Bluetooth host address of the target

computer written to it via USB. The operating system’s Bluetooth stack requires a custom entry

of the controller’s address to allow connections, because the PS Move does not use the “classic”

PIN-based Bluetooth pairing mechanism. Once connected, the communication is carried out via

the Bluetooth version of the HID protocol [11].

Vision Tracking

To get the 3D position of the controller relative to the camera, computer vision can be used on the

camera image to determine the size (used for distance calculation) and position of the glowing

orb in the camera image. Distortions of the camera image due to the lens and color differences

due to lighting conditions have to be taken into account for accurate tracking results.

Orientation

The orientation (rotation in 3D space) of the controller can be obtained by integrating sensor

readings from the gyroscope, accelerometer and magnetometer over time. The sensor readings

can be obtained via Bluetooth. An AHRS algorithm can be used to convert sensor readings into

a quaternion representing the orientation of the controller.

Sensor Fusion

Combining the results of both Vision Tracking and Orientation, the 6DoF pose (3 DoF position

and 3 DoF rotation) can be calculated. Additionally, sensor fusion can be used to improve

accuracy of vision tracking using additional data from the inertial sensors. This allows short-

term dead reckoning using only sensor data when the camera tracking is lost.

2

Application Programming Interface

To make it easy for application developers to take advantage of the solution, the API to access all

the calculated information should be easy to use and should allow for straightforward integration

into existing solutions.

3

CHAPTER 2
Related Work

This chapter highlights important scientific papers related to the solutions the library requires for

sensor fusion. The section is split up into sub-sections dealing with problems in the order that

they need to be solved: Camera calibration needs to be done before blob tracking yields useful

results, inertial sensors have to be read before sensor fusion (of camera and inertial sensor data)

can be carried out. Finally, existing approaches are presented.

2.1 Intrinsic Camera Calibration

Camera optics usually introduce (radial and other) distortions to the captured image. These

distortions have to be measured and accounted for, either by adjusting the projection of content

rendered on top of the camera image, or by undistorting the camera image. A well-calibrated

camera is a prerequisite for accurate blob tracking.

The calibration methods described here usually follow the same procesure: A known object

or pattern is captured by the camera, and the distortion is determined by comparing the expected

image with the captured image.

The projection from 3D world coordinates to 2D camera image plane coordinates is depen-

dent upon several parameters, these can be categorized as follows (from [12]):

• Extrinsic parameters: Translation (3 parameters for all 3 axes in 3D space) and rotation

(also 3 parameters) of the camera coordinate system origin relative to the world coordinate

system origin

• Intrinsic parameters: Aspect ratio of the camera image) (s), focal length of the camera

(f), principal point (2 coordinates)

The intrinsic parameters of the camera are camera-specific and do not change when the cam-

era is moved. The extrinsic parameters are environment-specific and change when the camera

is moved or rotated. As far as camera calibration for the library is concerned, we deal with

calibrating the intrinsic parameters here.

5

Digital camera calibration methods: considerations and comparisons

As a starting point for digital camera calibration, [28] gives a nice overview of the current ap-

proaches taken in both computer vision and (close-range) photogrammetry. Calibration is de-

scribed by the authors as a “necessary prerequisite for the extraction of precise and reliable

3D metric information from images”. Several parameters must be known for a camera to be

considered “calibrated” in [28]:

• Principal distance

• Principal point offset

• Lens distortion

Calibration methods are then categorized into different aspects, such as the methods and

models used (perspective projection vs. projective camera model), implicit (visually correlat-

ing point positions) or explicit (physically interpretable models) models or 3D vs. planar point

arrays. Another distinction that is made is between point-based and line-based calibration meth-

ods.

Experimental tests were then carried out, comparing different methods and software pack-

ages for camera calibration using a 3D test field (with the object stationary and the camera

moving) and a planar object (chess board pattern, with the object moving and the camera sta-

tionary).

A very interesting aspect of the findings in [28] is the fact that for most off-the-shelf con-

sumer cameras sold today, there can be a difference in the radial distortion (which has to be

measured by the camera calibration in order to revert it in the undistorted image) for each color

channel in the camera image, due to the way the image sensors are laid out in consumer cameras

(usually using a color filter array using a Bayer pattern). Ideally, the radial distortion can there-

fore be different for each color channel, and must be corrected for each channel separately. This

requires that the image data is available in the corresponding RAW format to work on separate

channels.

In the case of the PS Move API, we are dealing with low-cost consumer webcams, where

getting the RAW sensor image is usually not possible or (due to bandwidth constraints and

a minimum required framerate) not feasible, so per-channel radial distortion compensation is

something that cannot be implemented easily. However, given that the PS Move tracking relies

on separate colors (when tracking multiple controllers) and accurate 3D metric information, it

would be desirable to do separate camera calibrations for each channel (and maybe also work

on separate color channels for blob tracking).

Camera Distortion Calibration using a Chess Pattern

Because cameras usually have distorted pictures as a result of their optics, a calibration proce-

dure has to be carried out for each camera model to make straight lines in the world appear as

straight lines in the camera image. In [33], a chess pattern is used for calibrating the camera.

6

The OpenCV library [14] provides built-in functions for doing camera calibration using a

similar approach that also uses a printed chess pattern.

Geometric Camera Calibration Using Circular Control Points

Instead of using a checkerboard image, [12] starts out with a 3D object with circular control

points. The author also points out that in order to properly calibrate a camera, external error

sources must be suppressed as much as possible. The extend of accuracy required depends on

the use case: Metrology has much higher requirements for accuracy than robot guidance. In the

case of the PS Move API, accuracy isn’t as important as ease of use and high frame rate (for the

camera undistortion / projection calculations).

The camera model is defined as the mapping of 3D to 2D coordinates on the image plane.

Examples of the projection are orthographic and perspective projections. While the orthographic

projection isn’t well-suited for real-world images, the perspective projection is much better

suited, and is often augmented with an additional lens distortion model to match real-world con-

ditions more closely. An example of a pure perspective projection without any lens distortion is

the pinhole camera model, which can be used to approximate real-world cameras, but because

of the physical properties of image sensors used in consumer cameras, no camera matches the

pinhole camera model exactly.

In the PS Move API using multiple controllers, the intrinsic parameters would be the same

for each controller, as they are bound to the camera, and the extrinsic parameters would be dif-

ferent, as they describe the translation and rotation of the camera relative to the world coordinate

system origin (assuming that for each controller, we map the world coordinate system so that

the origin is at the center of the sphere, and the axes are lined up with the inertial sensor axes of

the controller).

In [12], the calibration takes advantage of the property of circles that they either become

ellipses or (as special case of an ellipse) circles when observed by a camera. Determining the

ellipse center in the image gives the location of the circle center, avoiding projection errors that

happen when using other kinds of objects. To account for radial distortion and decentering

distortion, a total of 8 intrinsic parameters are used.

Tests were carried out using 200 synthetic images and one real-world image that was used

as a reference model. The synthetic images were processed with a blur filter to more closely

match real-world conditions. As calibration object, two perpendicular planes were used with 256

circular control points on each plane. The position and arrangement of the control points was

known, and accurate knowledge of the control point layout is a prerequisite for the calibration

method to give good results.

An interesting insight of [12] is the list of error sources in the real world that influence the

camera calibration:

• Real vs. synthetic pictures: The projection model of the synthetically-generated pictures

does not match the real projection of the camera, thereby introducing a projection error -

this error is especially visible when using cameras with wide-angle lenses.

8

• Illumination changes: In [12], the calibration was carried out with two different light

sources (fluorescent and halogen lamps) and the results compared. Due to the chromatic

aberration caused by different lighting, the points might appear out-of-place or magnified

in the camera image, resulting in different observations for the control point coordinates.

• Camera electronics: This error source was described as line jitter (noise in horizontal

placement of pixels).

• Calibration target: As described above, the control point coordinates and size/layout

must be known exactly for the calibration algorithm to work. Wrong data here leads to

wrong calibration results.

Especially the point about illumination changes is an important point to consider for the

PS Move API tracker, not necessarily for camera calibration, but for blob tracking in general -

different lighting conditions (or exposure settings) will make the sphere appear magnified in the

camera image, leading to different radiuses observed (and subsequently to the wrong distance

reported).

2.2 Blob Tracking

Given a calibrated camera image, the next step for sensor fusion is to track the controller’s

sphere in the camera image, which is referred to as blob tracking, or (in the case of circular

blobs) sphere tracking. The results of sphere tracking are the 2D position and the size (radius) of

the sphere. Mapping the radius to a depth value and combining the 2D position with the depth

gives a 3D position.

Tracking algorithms usually take advantage of either the shape (e.g. circle) or color of the

object to be tracked. In the case of the PS Move API, both the shape (circle) and color (by setting

the RGB LEDs) can be used for tracking.

Edge-based Sphere Tracking

One approach of vision-based sphere tracking was implemented by [15] using 2D Hough trans-

forms. In that specific example, circles are detected using edge detection, followed by a voting

phase on a 2D search space (the X and Y coordinates of the circle center). The third parameter

(the radius of the circle) is calculated using a histogram after candidates for the center point have

been determined.

As can be seen in figure 2.2, this approach was mostly used for detecting circles that don’t

stand out from the rest of the image except for their borders.

This method splits the usual 3D search space (parameters x0, y0 and r) into a 2D search

space (x0 and y0) followed by a 1D histogram search (r). The center search utilizes “voting”

- each pixel in the search space (usually size = image_width × image_height, but a more

fine-grained search space is also possible). A high vote count only provides an indication of a

possible center point - this indication has to be verified. The verification step determines the

9

The tracked object is a soccer player, and the tracking continues successfully when the player

moves from inside the shadow of the stadium to outside the shadow.

In the PS Move API, we also have to make sure to adapt to the changing size and appearance

(color) of the Motion Controller in the camera image. Failure to do so might result in slower

tracking results (as the tracking has to be re-started from an unknown position instead of just

shifting the region of interest).

Another important result of [19] that can be used for the PS Move API implementation is

that the results show that pixel values change sharply around object boundaries, making the

pixel values at and around the boundaries extremely useful for slowly shifting the tracking area

around.

BraMBLe: A Bayesian Multiple-Blob Tracker

Tracking multiple objects is sometimes important in computer vision blob tracking. In [16], the

goal is to track multiple persons (an unknown number thereof that will vary over time) with a

single camera. As with all blob tracking algorithms, a calibrated camera is a prerequisite for

tracking.

The authors describe the usual approach for multiple-blob tracking: First, the background

subtraction takes place, then foreground modelling takes place, which usually just uses a simple

temporal filter with a constant velocity predictor. Also, only rudimentary occlusion filter is said

to be made for multi-object tracking. Avoiding occlusion filtering for multi-person tracking

can be achieved by mounting the camera high enough (so that it nearly points down vertically),

avoiding occlusions altogether rather than dealing with them in the algorihm.

As the procedure outlined in [16] deals with a bayesian distribution, an “observation likely-

hood” measure has to be introduced. This measure describes the likelyhood that a configuration

of objects gave rise to an observed image. The configuration itself describes the number, po-

sition and size of the objects. For example, a configuration of two persons, one of size A and

position B and another one of size C and position D could have a 70 percent likelyhood of giving

rise to a certain image E captured by the camera.

To model persons’ appearances, a generalised-cylinder object model is used in which a per-

son is modeled as a cylinder with 4 horizontal discs of different diameter. If the camera is

mounted sufficiently low, a person in the camera can be described as the area that 4 parallel lines

(the side view of the horizontal discs) span in the camera image. In addition to modelling the

shape of the objects to track, the appearance and disappearance of objects (persons entering and

leaving the room) also has to be described via a distribution.

Problems with this algorithm were false positives at reflective areas of the image, in which

the person appeared - normal filters were not able to deal with this problem. Also, tracking was

problematic in cases where two people cross in front of a third person - while tracking was not

lost, the three objects could not be separated by the tracking algorithm.

In summary, the research in [16] shows that even complex shapes such as the human body

can be approximated by rough shapes (such as cylinders) with good tracking results. For the PS

Move API, the shapes we need to track have a circular shape, and have distinct colors, so the

tracking problem is reduced a bit. While multiple objects have to be tracked in the PS Move API

as well, the number of objects to track (and even their color) are known to the algorithm.

13

Real-time 3D gesture visualisation for the study of Sign Language

Gesture visualisation and recognition is very useful in the context of sign languages. [23] presents

“ThirdEye”, an interactive visualisation tool for movement analysis. The French sign language

was recognized as full language in France in 2005. Signed languages need a different script than

written languages, as written languages are linked to the verbal representation, whereas signed

languages are more related to the real-world concepts.

The core hypothesis in [23] is described as: “The realization of gestural sign (sic) casts traces

in space that have a scriptural quality”. In linguistics, segmentation of the traces and possibly

automatic translation plays a vital role. The dynamic of the movement is thought to be a good

indicator of the automated segmentation (compared to having only the trace without temporal

information).

The ThirdEye motion capture system is divided into distinct parts:

• The devices: The device consists of two luminous spherical markers (one green, one blue)

that can be clipped onto each hand of the signer, a PS Eye camera set to low exposure and

a foot switch to trigger the writing

• The algorithm: Two threads deal with the data processing: One thread deals with the

capture part of the code, another thread deals with rendering the traces

To determine the position of the colored spheres, a simple algorithm is used:

1. Look at random pixels, find one with the right color (the iterations here have an upper

limit, to avoid looping forever)

2. Go left/right (up/own) - “draw lines” from the pixel with the right color to find the border

of the colored sphere

3. For the drawn lines, take the center of each line and combine the two centers to get the

sphere center (this works because the sphere always appears as a circle in the camera

image)

4. For the next frame, skip step 1 and use the current center as the starting point for steps 2

and 3

The sphere size is determined by systematically filling the majority of pixels in the color

area. From the pixel count (area), the sphere size can be determined, and subsequenty the depth

(distance of the sphere from te camera) can can be deduced.

The solution presented in [23] has several aspects in common with the PS Move API’s visual

tracker part. The algorithm used for determining the position and size of the colored blobs

demonstrates an existing and low-cost (in terms of CPU time) solution. The PS Move API also

uses the PS Eye camera with low exposure because of the good performance and off-the-shelf

availability.

14

2.3 Inertial Sensors

With the blob tracking step resulting in a 3D position, the 3D rotation of the controller must be

determined separately (solutions like [3] can also track the orientation from the camera image,

but the PS Move does not provide colored dots on its RGB LED-colored sphere).

Representation of rotations in 3D space is best done using quaternions, to avoid problems

with gimbal lock that can happen when using Euler Angles (see [8] for a description of quater-

nions and their use in computer science and geometry).

The three types of inertial sensors that are available in the PS Move Motion Controller are

(all sensors are susceptible to noise in the raw readings):

1. Accelerometer: Accelerometers measure acceleration relative to free fall. When the con-

troller is kept steady, the measurement gives the acceleration towards the earth’s center

(gravity). The gravity vector can be used to determine the controller’s orientation, but

cannot be used to determine the rotation on the axis parallel to the gravity vector. During

movement, the accelerometer measures the combination (sum) of the gravity vector and

the movement acceleration direction vector.

2. Gyroscope: Gyroscopes measure the angular velocity around a specific axis. When the

controller is kept steady, an ideal gyroscope reads zero, but in general, gyroscopes usually

have a measurement bias. This bias introduces errors when the readings are integrated

over time to give the angular rotation. For this reason, the angular rotation readings drift

over time. The advantage of gyroscopes are the quick response times.

3. Magnetometer: Magnetometers measure the direction of the magnetic field. This can be

compared to accelerometers, but instead of pointing towards the earth’s center, the mag-

netic field points to the magnetic north pole, which (depending on the location on earth)

makes it possible to determine the rotation around the axis parallel to the gravity vec-

tor. Magnetometers are susceptible to interference from local magnetic fields (electronic

devices, metal furniture, ...).

All these inertial sensors are implemented as three-axis sensors in the PS Move Motion

Controller. In general, the gyroscope can be used for short-term rotation detection while the

accelerometer and magnetometer together can be used to have a stable reference orientation

towards which the rotation can be re-adjusted to over time.

An additional use case for inertial sensors is position estimation when the blob tracking

algorithm fails to determine the 3D position of the controller (e.g. because the controller is

obscured in the camera image). The use of inertial sensors for position prediction/estimation is

known as dead reckoning.

Orientation Filter for Inertial Sensor Arrays

Combining the accelerometer, gyroscope and magnetometer sensor readings into an estimation

of the controller orientation is a prerequisite for sensor fusion. It also helps with applications

15

where the orientation of the controller should be used as part of the input data (e.g. pointing

applications).

In [21] two new orientation filter algorithms are presented, depending on the availability of

sensors and the desired output accuracy:

• IMU – This algorithm only depends on a 3-axis accelerometer and a 3-axis gyroscope.

The output is a quaternion describing the attitude relative to gravity (see figure 2.6)

• AHRS – This algorithm builds on top of the IMU algorithm, but includes an additional

3-axis magnetometer, which measures the magnetic field. The output is a quaternion

describing the attitude relative to both gravity and the magnetic pole.

The quaternion representation has been chosen, because it is used as the default represen-

tation in many software packages dealing with 3D orientation representations, and because it

avoids the gimbal lock of Euler angles. The Euler angles can be calculated from the quaternion

representation.

A very simple orientation algorithm simply integrates the gyroscope readings (which mea-

sure rotational velocity) over time. This has to be compensated for noise and sensor bias, other-

wise the result would drift quickly. Using the accelerometer readings, a vector pointing towards

the earth’s gravitational center can be obtained (assuming no extra movement), which can be

used to determine the orientation relative to earth’s gravity, but rotations on the axis parallel to

the gravity vector cannot be measured with this method. To also get a reference heading for

rotation parallel to the gravity vector, a magnetometer is needed. The magnetometer will return

a vector describing the direction of the magnetic pole of the earth, working like a compass.

Fusing the information from the gyroscope (quick response), accelerometer (orientation rel-

ative to gravity) and the magnetometer (orientation relative to the magnetic field), a good es-

timate of the real orientation can be made. Comparing the proposed algorithm with existing

algorithms based on Kalman filters (see figure 2.7) shows that the performance compares to and

exceeds that of the Kalman-based filters, while having lower computational requirements and

lower implementation complexity.

An optimized C implementation of the IMU and AHRS algorithms have been made available

as open source and can be adapted for other applications.

Camera Attitude Calibration using Inertial Sensors

When working with cameras for which the focal distance is unknown, one can calibrate the

camera parameters by determining parallel lines in the camera image and finding their vanishing

point (see figure 2.8 for an example image with vanishing point).

In [20], two cameras and an inertial sensor package are used to determine the horizon and

focal distance of a camera system. The proposed solution can work with only one vanishing

point, but the authors also used two vanishing points to make their results comparable with other

methods.

As far as hardware is concerned, two cameras are used for stereo vision, and in between

the two cameras, sensors are mounted: A three-axis accelerometer, three gyroscopes and a two-

axis inclinometer. When the device is not moving, the length of the accelerometer vector is the

16

Visual-Inertial Sensor Fusion

In [2], computer vision and inertial sensors are used to combine the benefits of computer vision

(accurate, non-drifting tracking) with those of inertial sensors (responsive results with no out-

liers). The authors use an IMU sending updates at a rate of 100 Hz and a camera with 25 Hz (at

a resolution ot 320x240 pixels).

The visual tracking works by rendering a CAD model of the scene and correlating detected

features in the CAD model with those of the camera image. If only a few features are found,

additional features are extracted from the image. The inertial data is used to augment the filter

input and algorithm output of the sensor fusion system.

Two important points are made with regard to sensor fusion in [2] concerning vision and

inertial sensor input:

1. Outlier rejection. Inertial sensor do not produce outliers (even though they have noisy,

drifting output), while vision-based methods sometimes detect sporadic outliers that might

affect the algorithm output depending on the filter used. In [2], this problem is dealt with

by calculating a scalar based on the state of the system, and using a threshold value to

decide whether to accept or reject a given reading.

2. Divergence monitoring. When no visual features are detected, the system relies solely

on (biased and drifting) inertial sensor data. To compensate for that, the vision image can

be compared with the CAD model rendered at the estimated position. If no vision image

is obtained, time can be used to increase a divergence threshold. Again, if the divergence

monitoring test fails, the system can assume that the current state has diverted, and re-start

with the initialization process.

In general, [2] argue that combining inertial sensor data with data from computer vision can

yield better tracking quality, while also reducing the demand on the quality of vision measure-

ments (for equal or better results).

A disadvantage of the approach taken by [2] is that they rely on rendering a textured 3D

model of the environment in which the system is used. This adds additional set-up work for

getting the system to run, and also adds more processing power requirements to the hardware,

as it has to render and then analyze the rendered CAD model.

Tightly integrated sensor fusion for robust visual tracking

In [18], inertial sensor data (gyroscope-only) is used to provide predictions for a visual sensor’s

movement even in the case of motion blur. A model of the scene’s content has to be prepared

off-line using CAD. The vision-based tracking used only works for slow movements - once the

movement between two consecutive frames becomes too big, the local search of the new camera

pose fails, and the system requires manual re-initialization.

The fitting of the camera pose estimation is done using edge detection: First, the camera

image is obtained, then the edges of the CAD model are rendered using the old (or predicted)

camera pose. After that, edge detection is applied to the camera image, and the rendered and

detected edges are compared, and a new estimation of the camera pose is calculated.

19

The gyroscope used in [18] was sampled at a frequency of 171 Hz - as raw data was read

from the sensor, calculating and removing the sensor bias had to be done as a calibration step.

It was also noted that the gyroscope output was very sensitive to room temperature, and that a

good calibration and bias calculation was very important for accurate pose estimation.

Based on the inertial sensor data, motion blur in the camera image could be predicted, and

accounted for in the image processing / edge detection step. In the summary, the authors note that

accelerometers were not used, but could improve the results (position prediction of the camera).

Compared to [18], the camera in the PS Move setup described in this thesis does not move,

has a high frame rate (up to 120 Hz) and gives control over the exposure time, which eliminates

most motion blur-based problems. Also, the PS Move setup most (obviously) allow for tracking

moving objects, whereas [18] is suited more for moving a camera around a static scene.

As far as gyroscope output and calibration is concerned, the PS Move setup does not depend

on perfect gyroscope calibration to the same extend as [18] does - errors accumulating in the

gyroscope data processing can be corrected over time using the accelerometer and magnetome-

ter readings in the PS Move Motion Controller (a well-calibrated gyroscope is still useful and

desirable, so that the bias error is minimized in the first place).

Hybrid Inertial and Vision Tracking for Augmented Reality Registration

Another approach at combining vision tracking with inertial sensors for use in augmented real-

ity applications is presented in [32]. The solution presented combines the advantages of vision

tracking with the advantages of inertial sensors while avoiding the disadvantages of each tech-

nology, as the two technologies are complementary.

Maintaining an accurate relationship between the real objects and those rendered on top of

the camera image is one of the challenges in augmented reality solutions today. Sensor fusion is

one of the ways to improve the quality of tracking.

Different categories of tracking technologies are outlined in [32]:

• active-target: powered signal emitters and sensors are placed in a prepared and calibrated

environment

• passive-target: ambient or naturally occuring signals are measured by sensors (e.g. a

compass sensing the Earth’s magnetic field, vision systems sensing intentionally placed

fiducial markers

• inertial: completely self-contained, sensing physical phenomena created by linear accel-

eration and angular motion

Interestingly, the magnetometer (compass) sensor is not categorized as inertial sensor here,

because it measures signals that occur naturally on earth. Similarly, one could argue that the

accelerometer also measures (amongst linear acceleration caused by movement) the natural phe-

nomenon gravity. In this thesis, the magnetometer is always categorized as inertial sensor for

simplicity.

According to the categorization from [32], the PS Move API can be considered an “active-

passive-inertial” tracking system:

20

• the controller itself is an active-target for the vision tracking (camera), because the color

can be changed, and the color tracking only works when the controller is powered

• the magnetometer is a passive-target tracking technology

• the accelerometer and gyroscope are inertial tracking technologies

For the inertial sensor hardware, an Intersense IS-300 three-axis gyroscope is used, which

incorporates a gravity sensor and a compass to account for the bias drift.

Four coordinate systems are used in [32]:

1. The world coordinate system: An absolute reference point that describes the origin of

world coordinates

2. The camera-centered coordinate system: The center point of the camera - relative to the

world coordinate system, it not only describes the position but also the orientation of the

camera

3. The inertial-centered coordinate system: This coordinate system is offset a bit from the

camera-centered coordinate system (because the inertial sensor is not mounted directly at

the camera center), but the orientation is the same as for the camera-centered coordinate

system

4. The 2D image coordinate system: The coordinate system of the camera frame as it is

captured (projected from 3D space from the camera position)

In the PS Move API, the inertial-centered coordinate system has its origin at the position of

the controller, the camera-centered coordinate system works both as camera coordinate system

and world coordinate system (in the PS Move API, the camera is usually not moving, so it can

be used as a reference point) and the 2D image coordinate system is again the captured camera

frame.

One of the conclusions drawn in [32] is that accurate calibration of the two coordinate sys-

tems (inertial and vision) is important for proper integration of both subsystems.

One Euro Filter: A Simple Speed-based Low-pass Filter for Noisy Input in

Interactive Systems

While all related work in this chapter so far dealt with sensor fusion itself, the One Euro Filter [4]

itself does not deal with sensor fusion, but only with filtering of noisy input data. The One Euro

Filter is used in the PS Move API in the sensor fusion step to filter the resulting position of the

sensor fusion process for more stable position tracking.

The One Euro Filter is a “first order low-pass filter with an adaptive cutoff frequency”.

Adaptive means that at low speeds, a low cutoff is used to reduce the jitter (at low speeds, lag is

usually not so much of a problem) and as the speed increases, the cutoff frequency is increased

as well to reduce Lag (at high speeds, lag is usually more of a problem than the - relatively

small - noise). Another advantage of the One Euro Filter compared to more complicated filter

21

2.5 Existing Approaches

This section presents existing approaches that deal with tracking the PS Move Motion Controller

in 3D space and compares them with the PS Move API.

Move.me

Sony has released a solution called “Move.me” [30] for developers who want to use a Playstation

3 system together with the PS Eye camera and the PS Move Motion Controller. This solution

costs USD 100 and requires a PS3 system, a Playstation Network account, a TV or HDMI dis-

play to hook up the PS3 system and network equipment in addition to the development machine.

Compared to the PS Move API developed in this thesis, Move.me lacks the portability, cost

efficiency and flexibility: Our library can run on a mobile device and communicate directly via

Bluetooth, the minimum setup consists of a controller and a mobile computer and it is able to

use any camera input that is supported by OpenCV or that can grab frames in a format that can

be passed to OpenCV.

For example, it is possible to use a high definition camera with a higher resolution than

the 640x480 pixels provided by the PS Eye camera. In addition, using a networked setup, it is

possible to use more than 7 controllers in one application by networking together multiple host

computers.

Sony demonstrates that tracking is possible in principle – their implementation utilizes the

Cell Broadband Engine on the Playstation 3.

23

is lit from the inside by an RGB LED, allowing for many different colors. The body of the

controller contains 9 buttons:

• Four buttons (Square, Triangle, Cross, Circle) on the front, which are color-coded as pink,

green, blue and red

• Two buttons (Select on the left, Start on the right) on the sides, which have their names

written on them

• One big Move button sitting at the top center of the front, with the PS Move Logo on it

• One small PS button sitting at the middle center of the front, with the PlayStation Logo

on it

• One analog Trigger button at the back, with the letter “T” on it

With the exception of the analog Trigger, all buttons are digital. The Trigger can be used as

a digital button or as an analog 8-bit button. The PS button is special in that it is used as power

button to switch on the controller. Pressing the PS button for about 10 seconds will turn off the

controller - this is built into the controller’s hardware, and cannot be prevented by software.

On its bottom, the controller has ports for connections:

• A standard Mini USB socket used for pairing, USB connections and for charging from

USB host devices. This is a standard connector, and can be used with any standard Mini

USB cable - no special cable is necessary.

• Charging connectors for use with Sony’s charging dock accessory

• An expansion port for connecting the controller to accessories (e.g. gun attachments, etc..)

The controller has three types of built-in sensors - these are connected to the STM32F103VBT6

microcontroller, and cannot be accessed directly. The communication happens from the micro-

controller via a Cambridge Silicon Radio BC4RE Bluetooth module.

The following sensor chips are used in the PS Move Motion Controller (this information has

been reverse-engineered directly from the hardware by Kenn Sebesta in [29]):

• Accelerometer: Kionix KXSC4 10227 2410 three-axis accelerometer

• Gyroscope: Two chips, unknown origin (a two-axis gyroscope for the X and Y axes,

identified by [29] as STM LPR425AL and a single-axis Y5250H 2029 K8QEZ gyroscope

for the Z axis)

• Magnetometer: AKM AK8974 magnetic compass

26

The controller also contains a temperature sensor (make and model unknown). The temper-

ature value is included in the input report, but is not yet used in the sensor calibration algorithm

(the raw value can be obtained via the PS Move API, though).

In the input report, the accelerometer and gyroscope values are reported as signed 16-bit

values, the magnetometer fields are 12-bit signed values.

The PS Move Motion Controller sends up to 85 updates per second via Bluetooth on a Mac

OS X host, and up to 60 updates per second on a Linux host using the same hardware (it is

not yet determined why the two operating systems differ so dramatically in update rate). Each

update contains two readings for the accelerometer and gyroscope, giving an effective maximum

update rate of 170 Hz for the accelerometer and gyroscope, and 85 Hz for the magnetometer and

buttons.

Playstation Eye

For tracking the motion controller in 3D space, the Playstation Eye camera (figure 3.2) is used.

Any other camera could be used as long as it has a decent enough resolution, frame rate and

exposure control.

The PS Eye camera is a very good choice as a camera, because of its low cost, its USB 2.0

connectivity and the frame rate of 60 FPS at 640x480 and 120 FPS at 320x240. In addition to

having a good frame rate, the PS Eye camera also allows access to the exposure duration that the

camera uses. Turning off auto-exposure and turning down the exposure duration is important for

getting good tracking results and avoiding problems caused by motion blur on other cameras.

The camera has been released in 2007, independent of the Playstation Move Motion Con-

troller, but it is part of the Playstation Move system on the Playstation 3 (a PS Eye is required

for Move input on the PS3, but the PS Eye can be used for other applications without the Move

Motion Controller).

Another advantage of the PS Eye is that it’s supported out of the box on Linux since kernel

version 2.6.291. A proprietary driver2 for Windows is available from Code Laboratories. On

Mac OS X, the camera is supported by the open source macam3 driver, but it does not work

together with OpenCV in recent (64-bit) versions of Mac OS X.

An alternative to macam on OS X would be to create a userspace interface using Jim Paris’

original C code4 for interfacing with the camera using libusb.

Because of its price, availability and technical specifications, the PS Eye camera will be

used for the reference implementation and for testing the tracker library. Where it makes sense,

the library should prefer the PS Eye camera over other cameras connected to the system (e.g.

a built-in webcam in a notebook computer). Of course, other cameras such as HD cameras or

built-in webcams are also supported by the library, but the tracking performance might not be as

good as with the PS Eye camera, with which the library has been tested.

1Linux 2.6 commit fbb4c6d20f29f2b10daad31cc6238d91f93d70d4, November 2008
2http://codelaboratories.com/products/eye/driver/, retrieved 2012-09-25
3http://webcam-osx.sf.net/, retrieved 2012-09-25
4https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/eye.c, retrieved 2012-09-25

27

The following camera tracker features are available when building with OpenCV7:

• Getting the X/Y position and the sphere radius of tracked controllers

• Mirroring the camera image horizontally

• Auto-updating LEDs of connected controllers

• Deinterlacing of camera video input

• Retrieving the camera image as 24-bit RGB image

The following sensor fusion features are available when both the orientation algorithm and

the vision tracker are used:

• Getting the projection matrix for 3D rendering on top of the camera image

• Getting the model-view matrix for 3D rendering with the controller’s sphere center as the

coordinate origin

• Getting the 3D position of the controller

3.3 Pairing Process

This section describes the pairing process from a high-level point of view. Details about the

implementation on different platforms can be found in section 4.8.

In order for the Motion Controller to be able to communicate with the host computer, it has

to be “paired”. In traditional Bluetooth applications, this happens by pressing a button on the

device to make it discoverable, and then pairing the device with the host by entering either a

fixed PIN (for devices without a way of entering data, e.g. headsets, mice, ...) or by entering

the same PIN on both devices (for mobile phones, tablets, etc...). More recently, pairing via

Bluetooth could also be established via the same PIN-based technique, but instead of entering

the same PIN twice, the devices auto-generated a common PIN and display it - the user only had

to confirm that the PIN displayed is the same on both devices.

The official Playstation 3 controller (SixAxis, DualShock 3) and subsequently the PS Move

Motion Controller use a different method of pairing. In order to make the process less tedious

for gamers, pairing happens over USB. When the controller is connected via USB, the PS3 sends

its Bluetooth address via a HID feature report and the controller stores the Bluetooth address in

non-volatile memory. When the controller is turned on, it connects to the Bluetooth address in

memory, effectively establishing a connection with the desired host.

7some users might want to avoid the OpenCV dependency - the core library can be built without Tracker support

29

Pairing with the PS3

The pairing process happens automatically on the PS3 system, and users usually do not realize

that pairing takes place, as simply connecting a controller for charging will initialize the pairing

process:

1. Connect the controller to the PS3 system (the PS3 must be switched on)

2. Wait for about 2 seconds

3. Disconnect the controller from the PS3 system

4. Press the PS button on the controller

Pairing with PCs (Linux, Mac OS X, Windows)

The steps for pairing the Playstation Move Motion Controller with a PC are:

1. Connect the controller to the host computer via USB

2. The host computer opens the controller as HID device

3. The host computer reads the host address and the address of the controller (feature report

0x04)

4. The host computer determines its own Bluetooth address (this part is operating system-

dependent) - alternatively, the user might want to specify a custom Bluetooth address to

pair the controller to (this is especially useful for pairing with mobile devices that do not

have USB host mode capabilities)

5. The host computer compares the desired host address with the currently-set host address

(to avoid unnecessary writes to the controller’s memory)

6. In case the addresses differ, the host computer updates the host address in the controller

(feature report 0x05)

7. The host computer can now optionally add an entry for the controller to the operating

system’s Bluetooth stack in order for the Bluetooth stack to accept connections from the

controller - this essentially “fakes” the traditional PIN-based pairing process

3.4 Tracking Process

To track the controller with 6 degrees of freedom, the data from the camera image and the inertial

sensors must be combined, as can be seen in figure 3.3.

30

Figure 3.3: How the Tracking Process works in PS Move API

Calibration data

To transform raw data into a format usable by the library and to calculate the right distance from

the camera, three types of calibration data must be used:

1. Camera calibration: This calibration must be done once per camera type. It provides

the necessary parameters for reversing the lens distortion as described in [33]. Users can

either choose to create their own calibration data or use the camera in uncalibrated mode,

31

which might result in inaccurate tracking results. These inaccuracies might be acceptable

in certain use cases - calibration is not enforced.

2. Sensor calibration: Each controller’s inertial sensors have different output ranges. In

the factory, the controller is calibrated and the calibration data is saved in the controller’s

nonvolatile memory. It can be retrieved via USB HID. The PS Move API takes care

of saving the calibration data as file to the filesystem while pairing takes place. The

calibration data is used when the controller is connected via Bluetooth, and mapped using

the Bluetooth address of the controller.

3. Distance mapping: In order to provide more accurate distance measurements, the user

can calibrate the distance values (mapping of sphere radius to distance values) and save

this mapping in a special file. If available, this distance mapping will be used instead of

the default mapping, which will result in better depth perception. In some cases it might

be necessary to carry out a new distance mapping calibration if the lighting conditions

change - this is also why the distance mapping is refered to as “environment-specific” in

figure 3.3.

Sphere Tracking

Sphere tracking can be done in two ways:

1. Edge-detection and 2D Hough transforms – This method is utilized by [15] and gives

good results even if the circle isn’t highly visible in the camera image.

2. Color-based detection using contours – This method has been used by [3] and had very

good results using hue-based filtering in HSV colorspace.

As the PS Move is basically a colored sphere, using the hue-based detection using contours

in HSV colorspace has advantages for this implementation. While 2D Hough transforms can be

used with a color filter before the edge detection as well, the contour-based detection algorithm

should provide better results and also work in cases where the controller’s body (which itself has

a circle-shaped edge) obscures parts of the glowing RGB LED sphere.

The orientation tracking method described in [3] is not used in this work, as orientation track-

ing is done using inertial sensors built into the controller itself. This makes the computer vision

implementation simpler and makes good use of the high inertial sensor sampling frequency.

Advantages of using the RGB LED

In all presented sphere tracking algorithms, the tracking algorithm had no control over the color

of tracked objects. In case of the PS Move Motion Controller, the color of the sphere can be set

via Bluetooth, and (ignoring any delay from the Bluetooth traffic and the delay of grabbing a

frame from the camera) immediately observed in the camera image.

32

This has two nice side-effects:

• Determining the position – The position of the controller can not only be determined by

using a color filter. Switching the LEDs on and off and taking snapshots, then computing

the difference between these snapshots allows us to determine the position of the controller

in the camera picture without manual user intervention.

• Selecting a suitable color – By analyzing the environment, a suitable color can be picked.

Colors that are already present in the camera image prior to tracking can be skipped and

avoided when choosing a suitable color to assign to the RGB LEDs.

Again, these properties of the hardware in use allow for some simplifications and improve-

ments to the tracking that were not possible with static spheres.

Considerations for the Camera Calibration Method

For the PS Move API, the type of camera calibration that is needed should deal with lens distor-

tion, as it is important to have an undistorted image for accurate 3D position calculation (based

on the radius of the tracked sphere).

The approach in [33] seems simple enough to be carried out by developers wanting to use

new cameras with the library. Also, a similar implementation of this approach is shipped with

OpenCV, and so can be readily used on a wide variety of machines and cameras.

Camera calibration using inertial sensors as in [20] might be useful for some future im-

provements, but might not immediately apply to the problem at hand. Its use of inertial sensors

to augment the vision data is interesting, and provides some inspiration for the sensor fusion part

of the PS Move API.

Importance of the Orientation Algorithm for Sensor Fusion

A good orientation filter (e.g. the algorithm in [21]) is a prerequisite for estimating the controller

position in the camera picture when visual tracking is not available for short amounts of time

(e.g. because the sphere is fully obscured during tracking). Given the orientation, a movement

registered by the accelerometer (relative to the controller’s frame) can be rotated into the world’s

frame and from there to the camera’s projection.

3.5 Tracking Algorithms

This section describes all algorithms used during the visual tracking process. For an end-user

perspective of the tracking, see section 3.7, for a high-level overview of the tracking process

(including inertial sensor reading and sensor fusion), see section 3.4.

Assignment of Colors to Controllers

In the current implementation, a list of known “good” colors is hardcoded in the PS Move

API. As controllers are added to the Tracker object, the Tracker assigns a unique color to each

33

Figure 3.4: Blinking calibration without background movement: Image of the controller

switched on (A-frame, 1), image of the controller switched off (B-frame, 2), difference im-

age of 1 and 2 (3) and thresholded difference image (C-frame, 4). The color of the controller

can be determined by using the C-frame (4) as a mask for the A-frame (1) and calculating the

average hue (in the implementation, the mask is an AND-combination of all captured C-frames

to improve reliability).

controller. For advanced use cases, the API provides a function to specify the color for each

controller - in that case, tracking results can be worse than with auto-assigned colors.

Future improvements of this algorithm could take the current camera image (environment,

background) into account and avoid colors that already appear in the environment. In the case of

using the PS Eye with a low exposure, this is usually not necessary, because only the (actively-

lit) spheres are visible in the camera image.

Blinking Color Calibration

To determine a mapping from the assigned color of the controller to the color of the controller

in the camera image (which, depending on the camera, environment and exposure settings, can

be quite different), the following algorithm is used:

1. Switch the controller’s RGB LEDs to the controller’s assigned color

2. Wait 100 ms (capture and discard frames from the camera during that time)

3. Capture a frame from the camera and store it (A-frame)

4. Switch the controllers’ RGB LEDs off

34

Figure 3.5: Blinking calibration with background movement: The hand position changes from

frame 1 to frame 2. This is visible as two shadows in the difference image 3. The thresholding

(image 4) usually removes these errors.

5. Wait 100 ms (capture and discard, as above)

6. Capture a frame from the camera and store it (B-frame)

7. Generate a difference image (C-frame) of the A-frame and B-frame captured in steps 3

and 6 by creating the difference image and then thresholding and eroding/dilating the

difference image to remove any noise in the difference image

8. Repeat steps 1-7 for 3 more times, which results in 4 A-frames and 4 C-frames

An example of the blinking calibration can be seen in figure 3.4, and an example how this

algorithm deals with slight changes in the background between the A-frame and B-frame can be

seen in figure 3.5.

The resulting C-frames (difference images) are then added together into a single image (the

mask) using the AND operation. The pixels in the mask now describe the areas in all 4 A-frames

that changed during blinking. From this mask, only the biggest contour is taken and the average

color in that contour is determined from the first A-frame. The resulting color is the color of the

controller in the camera image. Some additional checks are carried out that make sure that the

hue of the color in the camera is in the same range as the hue of the assigned color, which makes

the algorithm more robust against false positives.

35

Figure 3.6: The sphere sizes and centers are properly calculated even though they are only

partially visible (the red/white squares show the region-of-interest for each tracked sphere, the

white border around the spheres is based on the center and size of the detected sphere)

Sphere Size and Center Calculation

Determining the sphere size is important for proper depth detection. Radius detection should

also work in cases where the sphere is only partially visible (see figure 3.6). The following

algorithm implements the sphere size detection:

1. Start with the biggest detected contour in the image given the color of the controller de-

termined from the Blinking Color Calibration algorithm

2. Set the current maximum distance to 0

3. For each pixel in the contour, calculate the distance to all other pixels in the contour

a) If the distance is greater than the current maximum distance, store the two pixel

coordinates and save the distance as the new maximum distance

b) If the distance is less than the current maximum distance, continue

4. The radius of the sphere will be half the maximum distance

5. The center will be the average of the two pixel coordinates stored in step 3.a (the center

point of the line between the two pixels with the greatest distance)

This algorithm works because a sphere always appears as a perfect circle in the camera

image (assuming a calibrated camera), and the upper limit for the distance of any two points

in the circle is always the diameter of the circle. In the extreme case, only two opposite pixels

36

on the edge of the circle need to be detected for the algorithm to still function correctly. Only

when no opposite pixels are visible anymore will the algorithm fail and report a smaller radius.

In particular, the center of the sphere does not have to be visible, as long as the diameter can be

determined from the sphere border.

To avoid unnecessary calculations, the “current maximum distance” is the squared distance.

Only at the end of the algorithm will the square root be calculated. To smoothen the detected

radiuses and centers, a filter is used in the algorithm after the sphere size and position detection

step.

Region of Interest Size Calculation

In the tracking algorithm, the Region of Interest (ROI) is a square sub-image of the camera image

that is centered on the current sphere image. The current implementation uses 4 differently-sized

ROIs. Using ROIs instead of analyzing the whole image on each frame gives a performance

boost, and also avoids wrong blobs to be mis-detected as the sphere. The ROI sizes are deter-

mined as follows:

1. If the environment variable PSMOVE_TRACKER_ROI_SIZE is set, the biggest ROI

size will be the integer value of the environment variable

2. Otherwise, the biggest ROI size will be half of the shorter side of the camera image:

roi_size0 = 0.5 ·min(width, height)

3. Subsequent ROI sizes will be 70% smaller than the size of each preceding ROI:

roi_sizen+1 = 0.7 · roi_sizen

For 4 ROI sizes and a 640x480 image, the ROI sizes will thus be calculated as:

• ROI 0: roi_size0 = 0.5 ·min(640, 480) = 240

• ROI 1: roi_size1 = 0.7 · roi_size0 = 168

• ROI 2: roi_size2 = 0.7 · roi_size1 = 117

• ROI 3: roi_size3 = 0.7 · roi_size2 = 81

State transitions can only happen to adjacent ROI sizes. ROI 0 is always used at the begin-

ning (and when tracking is lost) - when the sphere size becomes smaller, smaller ROIs are used

to better track the sphere.

Region of Interest Panning

The ROI for each controller will be centered around the contour detected for the controller. If

the contour happens to be outside of the ROI (or at the edge of a ROI), the ROI will be moved

in the direction of the contour for best tracking results. If panning does not help, the next bigger

ROI is used and tracking will be retried. If after switching (and panning) to the biggest ROI no

contour is found, the recovery procedure described below is started.

37

1. If the controller is not tracked, its search tile number will initially be set to 0 (correspond-

ing to the top left tile) - this is the initial value of the search tile number, and it will also

be set to 0 every time the controller is found

2. The biggest ROI will be placed at the position of the search tile, and the controller’s color

will be searched in this area

a) If the controller color is found, the ROI will be centered on the controller image, and

the controller will be marked as found

b) If the controller color is not found, the search tile number will be updated:

new_tile_id = (tile_id+ 2)mod (tile_count)

3. The new search tile number will only be used in the next frame, so only one tile search is

carried out per captured frame - this avoids excessive blocking of the main thread during

recovery

Because only one tile is searched per frame during recovery, the tracker algorithm has

roughly the same processing requirements during recovery as it has during tracking. Also, the

worst-case for recovering after tracking loss (using the example from figure 3.7) would be 6

frames:

• Assuming the controller is completely inside tile 3

• The tiling algorithm starts at tiles 0, 2, 4, 6 (4 frames)

• After wrapping, tiles 1, 3 are visited (2 frames)

• In tile 3, the controller is found - tracking has recovered

In the general case, however, the controller usually overlaps with at least two tiles (e.g. if it

is in the image center and of suitable size, it is contained in tiles 1, 2, 4, 5 and 6). In that case,

recovery can happen in only 2 frames:

• Assuming the controller overlaps with tiles 1, 2, 4, 5 and 6

• The tiling algorithm starts at tiles 0 and 2 (2 frames)

• In tile 2, the controller is found - tracking has recovered

This algorithm finds the controller faster than linearly searching for the controller from top

left to bottom right. More advanced search patterns could be used (e.g. an archimedean spi-

ral from the center of the image), but in my experiments, I found the current solution easy to

implement, efficient and quick to converge in the average case.

One improvement that could be implemented easily would be to not duplicate the last tile,

but instead add e.g. a centered tile at the end of the list.

39

Figure 3.8: The sphere radius is 64.58 pixels at 20 cm distance from the camera (left) and 6.57

pixels at 200 cm distance from the camera (right) using a PS Eye camera.

3.6 Distance Function

For some use cases, it is desirable to not only get the radius of the sphere in the camera, but also

a real-world distance measurement. This distance has to be calculated from the sphere radius.

The tracking algorithm returns the size (radius) of the sphere in the camera image. The

closer the sphere comes to the camera, the bigger it will appear in the image, and the farther

away from the camera, the smaller it will appear in the image. The mapping from radius (or

even diameter) to distance is not linear or quadratic - the mapping function has to be determined

experimentally by using curve fitting on experimental data.

Empirical Measurements

The tool distance_calibration (included in the PS Move API source) has been used to obtain

the radiuses of the controller for different distances. The desired distance is shown on-screen,

and the user has to place the controller at the displayed distance and press a button to confirm.

The tool takes 50 measurements at 5 cm increments, starting at 20 cm. The results are saved as

“distance.csv” (comma-separated value text file) and as screenshots “distance_N.jpg” (where N

is the distance in cm, e.g. 020 for 20 cm). Two example screenshots at 20 cm and 200 cm saved

by the tool can be seen in figure 3.8, the colored blobs below the controller are reflections of the

controller from the tape measure and the floor.

The resulting pixel values from the experimental measurements can be seen in figure 3.9.

The distance is measured from the red ring of the PS Eye camera.

Curve Fitting and Function Selection

To determine the most suitable function for mapping radius values to distance values, the open

source curve-fitting tool Fityk [31] was used. The most suitable function for the distance map-

40

Figure 3.9: Measured sphere radiuses (in pixels) from 20 cm - 200 cm, measured by the PS

Move API distance_calibration tool using a PS Eye camera in wide angle view with a low

exposure (Exposure_LOW setting) and a PS Move using magenta as the sphere color.

ping data set was found to be a Pearson VII distribution, which is called “Pearson7” in Fityk. In

the Fityk documentation8, the function is defined as:

y(x) = height ·
(

1 +
(

x−center
hwhm

)2
·

(

2
1

shape − 1
))

−shape

The distribution has four configurable parameters: height, center, hwhm and shape.

Parameters for the PS Eye Camera

Loading the “calibration.csv” file generated by the distance_calibration tool into Fityk, and

fitting a “Pearson7” function to the data (see figure 3.10) gives the parameters for the PS Eye

camera that are used in the PS Move API:

height = 517.281

center = 1.297338

hwhm = 3.752844

shape = 0.4762335

8http://fityk.nieto.pl/model.html, retrieved 2012-12-01

41

Figure 3.10: Curve fitting of distance data using the Pearson VII distribution in Fityk.

Parameters for Other Cameras

These parameters have been verified to work well with a PS Eye camera in wide angle mode,

but will not give the right mapping for other cameras. The distance calibration tool and the Fityk

application are freely available and the process is documented here, so users can use the same

process (distance calibration followed by curve fitting of a Pearson VII distribution function in

Fityk) to obtain the 4 required function parameters. The PS Move API provides a function to

set the four parameters for custom camera setups. By default, the above parameters are used

for distance calculation, so PS Eye users can use the distance mapping function out of the box

without any extra calibration steps.

3.7 End User Interaction

This section describes the way the end user sees and interacts (indirectly) with the library. It

describes the steps necessary to calibrate the camera (technical details in [33]), to pair the con-

troller (technical details in section 3.3), to calibrate the magnetometer and finally to start the

tracking process (details in sections 3.4 and 3.5).

Calibrating the Camera

Calibrating the camera is important if the user requires high-quality tracking accuracy or if the

camera in use has noticeable lens distortion (which is true for almost all consumer cameras).

42

This step is optional - if it is not carried out by the end user, the camera image will be

processed as-is, otherwise the undistortion step will be done for every frame captured from the

camera by the library.

The PS Move API includes an utility tracker_camera_calibration (source code in exam-

ples/c/tracker_camera_calibration.c) that users can use to calibrate the camera. For this step, the

user must print out the chess board pattern found in contrib/pattern.png in the PS Move API

source:

1. Print the pattern from contrib/pattern.png

2. Start tracker_camera_calibration

3. Place the printed pattern in front of the camera

4. Move / tilt the pattern until it gets recognized by the application, and a colorful grid gets

drawn on top of the pattern

5. Press the space bar to capture the image

6. Repeat the previous two steps 9 more times to capture a total of 10 images that will be

used for calibration - make sure to always place the pattern in a different position/angle

from the camera

7. The calibration data will be calculated, and a preview of the undistorted camera image

will be shown

8. If the output looks good, the user can close the application and start using the PS Move

API

9. If the output looks wrong, the user must re-do the calibration steps and capture 10 more

images until the calibrated picture looks good

It is possible to carry out the camera calibration for specific camera models and lens combi-

nations (if the camera has exchangeable lenses). In most tests, the PS Eye camera gave accept-

able tracking results even without using the camera calibration described here.

As the camera calibration is independent of the PS Move Motion Controller, this calibration

can be carried out without any PS Move Motion Controller paired or connected.

Pairing Process

The following steps have to be carried out by the end user:

1. Connect the controller to the host computer via USB.

2. Run the “psmovepair” utility and wait until it has finished.

3. Disconnect the controller and press the PS button.

43

While pairing should be hassle-free and a simple three-step process as outlined above, de-

pending on the operating system and version used there might be some caveats to the pairing

process:

• On Mac OS X 10.7 (version 10.7.3 and up), pairing might not work reliably.

• On Mac OS X 10.8, initial pairing will take about 42 seconds while the library waits for

the OS X “blued” process to shutdown. The user might have to enter the system password.

Subsequent pairing will be instantaneous.

• On Linux, pairing requires root permissions. Restarting the Bluetooth Daemon is cur-

rently only implemented for Linux distributions using upstart (this includes Ubuntu Linux

and Debian).

• On Mac OS X 10.7.3 and up (including OS X 10.8) and on Linux, the Bluetooth sys-

tem will be deactivated during the initial pairing when the controller’s Bluetooth address

needs to be inserted into the system’s Bluetooth stack. This only happens once for each

controller and OS installation, even if the controller is paired with another machine and

then paired again with that installation.

• On Windows, a trial-and-error procedure (see section 4.8) has to be carried out to get

pairing to work. It usually works after several tries and has been tested on Windows 7 and

on Windows 8 installations.

Background information on how pairing is implemented and the reasons for the limitations

listed above can be found in section 4.8.

Calibrating the Magnetometer

To calibrate the raw magnetometer ranges, the controller to be calibrated must be connected

via Bluetooth. The calibration is environment-dependent, so users might want to carry out the

calibration process every time the setup is moved to a different location.

The magnetometer readings are only used as a 3D vector that points to the magnetic north

pole in [21], so the length of the vector is not important, only the direction. As such, the mag-

netometer readings on each axis are mapped to a value range of (−1,+1), including both end-

points.

In principle, the magnetometer can be calibrated by pointing every axis exactly towards and

exactly away from the direction of the magnetic north pole. As this requires special equipment

in practice, this solution simply asks the user to rotate the controller in all directions, and a

threshold value is used to determine when the observed values are “good enough” (i.e. the value

range is big enough to calculate a good direction vector from it). The steps are:

1. Connect one or more controllers via Bluetooth

2. Start the magnetometer_calibration tool

44

3. For each controller, the tool will display on-screen instructions on how to calibrate the

controller:

a) The controller starts out with a red sphere

b) The user must rotate the controller into all directions, so that the minimum and max-

imum raw values for each axis can be determined

c) As calibration progresses, the progress is shown on-screen, and the controller’s

sphere slowly fades to green

d) When calibration is done, the user must press the Move button on the controller to

finish the process

The magnetometer calibration will be updated dynamically at runtime. As such, the cali-

bration is not mandatory, but a warning will be printed if no calibration data was found. If no

calibration is available, the value range will be adjusted dynamically at runtime, as new mini-

mum and maximum values are observed.

Tracking Process

This section assumes that the pairing process has already been carried out, and that the controller

connects to the host machine when the PS button is pressed. See the previous section on how

the pairing process is carried out.

• Press the PS button on the controller - the red LED starts blinking

• Wait until the red LED on the controller stops blinking and becomes lit (if the LED

switches off after blinking, the connection was not successful and pairing might need

to be carried out again)

• Start any of the example applications (e.g. test_tracker) and hold the controller in front

of the camera

• The controller will blink a few times9 - do not move the controller during that time, or the

calibration will not succeed and start again

• After the blinking calibration, the sphere of the controller will be lit up and the tracking

output will be shown on screen

• In case the tracking output is not satisfactory, start the application again to re-initialize the

calibration

For some applications that utilize the magnetometer for orientation tracking, it might be

necessary to carry out a magnetometer calibration first.

When using multiple controllers, connect all the controllers first and then start the example

application - the applications usually determine the number of connected controllers at startup,

9technical details are described in section 3.5, “Blinking Color Calibration”

45

so any controller connected after startup is not used (the API provides features for re-initializing

the hidapi and discovering newly-connected devices, in case of moved this happens automati-

cally under Linux by listening for udev events).

In general, tracking works best with the exposure turned down as much as possible - this

avoids motion blur and avoids any false positives from other light sources or colored objects in

front of the camera. For situations and use cases where it makes sense to have a higher exposure

(e.g. augmented reality applications where the user should be able to see herself in the camera

image), the intensity of the controller will be turned down by the blinking calibration algorithm.

Without dimming the LED sphere, the tracking algorithm might not be able to detect its color,

because its brightness makes it appear as white color in the camera image.

3.8 Design Decisions

This section lists some of the design decisions and best practices that are used in the implemen-

tation of the PS Move API library as well as in this thesis.

Language

The implementation language chosen is C. It provides high performance at a low level that

is suitable for writing code dealing with high sampling frequencies. Choosing C has the added

benefit of allowing other languages to link to it, as most programming language runtimes provide

some way of bindings C libraries.

Layering

The library will be split up into different layers (low-level, calibration, orientation, tracking).

This eases maintenance and allows different developers to work on different modules during

maintenance and development time. It also allows users of the library to choose to not use some

layers, while still being able to use the rest of the library (e.g. for some use cases it might make

sense to use only the lower-level APIs without using the vision tracking part).

Computer Vision

For tracking the controller in the camera image, OpenCV will be used, as it is widespread,

portable and stable. Integrating with OpenCV will also allow other developers to use their

existing OpenCV skills and apply them to the vision part of the library, should the need arise.

Orientation Tracking

An Attitude Heading Reference System is used to determine the orientation of the controller

in 3D space by means of a rotation quaternion. This will allow this component of the library

to be indepentent of the other code, and will also allow users to exchange the supplied AHRS

algorithm with another one should the need arise.

46

Build System

CMake has been chosen as the build system of choice, as it provides all the necessary abstrac-

tions for doing cross-platform builds. While in theory other build systems might be used to build

the library, the reference implementation and core utilities will make use of CMake.

Language Bindings

Bindings for higher-level languages are provided to make the library more accessible and allow

beginner-level programmers to quickly develop solutions with the library.

API Documentation

API documentation is provided explaining the list of functions, the parameters and return values

as well as all data types that are public. Usage examples should be provided directly in the

documentation where the usage is not immediately clear from the pure parameter description.

Profiling

Because reading and writing input/output reports to the HID device has to be done as quickly as

possible to reach the maximum update rate of the controllers (which results in the best possible

tracking achievable with this hardware), read and write performance should be measureable.

Similarly, the performance of tracking the controller position in the camera image must be made

measurable, as a high frame rate here is also an important factor for some use cases.

Functional Tests

For each feature of the library, a small test application should be provided that can be used to

test that specific feature and provide human-readable output (where it makes sense, this output

should also be graphical).

In addition to serving as a way of verifying the correct function of any given part of the

library (which helps in tracking down problems using the library), this also allows the developer

and other contributors to verify that changes to the core library do not cause regressions.

Debugging Output

For maintainers of the library and for debugging purposes, the library should have an option

to be built with additional debugging information. This is very helpful in spotting bugs and

diagnosing unexpected behaviour.

Information Hiding

Between the library and user code, only an opaque handle (a pointer) is passed, making sure

that all modifications of internal data structures are done via API calls. One advantage of this

approach is that the library developer can be sure that all modifications to the state of its objects

are only carried out by the library functions, and not by random user code. Another advantage is

47

that the developer of the library has the freedom to change the internal structure (and allocation

size) of objects managed by the library without breaking the API (source interface) or even the

ABI (binary interface) for end user applications.

Object-Oriented Programming

Even if the language in which the core library is written doesn not have object oriented features

built-in, the API is designed with object-oriented patterns, which makes it easier for developers

to see the structure behind the library’s types. This design makes it easier to create higher-

level language bindings for languages that are object-oriented. Another feature of using object-

oriented design is that functions that belong together have the same prefix in their name.

Defensive Programming

Assertions should be used at critical positions in the code (such as at the beginning of a library

function to check parameters). With many assertions, code may not be as fast as it could be

(without assertions), but it also means that errors are detected much earlier. When assertions fail,

the error message should point out which assertion failed to ease debugging and troubleshooting.

Modular Programming

The core library and the tracker part are built as two separate libraries, allowing developers to

use only the core library when the tracker part is not needed - this is especially useful for projects

that do not want to ship many megabytes of unused dependencies with their application. In the

concrete case of the PS Move API, not linking against the tracker library means that OpenCV

does not have to be linked and shipped with the final application.

48

CHAPTER 4
Implementation

This chapter describes the implementation of the PS Move API library. In section 4.1, the

high-level architecture of the implementation is given. Section 4.2 will list all third-party depen-

dencies that the library needs or incorporates. The modules of the implementation are described

in section 4.3 and 4.4: Section 4.3 describes the public modules that are available to the user

of the library, whereas section 4.4 describes the modules internal to the PS Move API, which

are not exposed as part of the public API. Bindings for additional programming languages are

introduced in 4.5, and are documented with short code examples. For distributed deployments,

the Move Daemon (described in section 4.7) can be used. Finally sections 4.8 and 4.9 deal with

platform-specific customizations for pairing and camera access, respectively.

Library API Documentation

The API documentation for the modules described here can be found in appendix A, which also

includes instructions on how to build the API documentation from source using Doxygen.

Obtaining the Source Code

The source code of the PS Move API is available under a BSD-style license from

http://github.com/thp/psmoveapi

4.1 Architecture Overview

The PS Move API consists of a C library (figure 4.1), language bindings on top of that library

(figure 4.2) and core utilities that make use of the C library and are essential for using and setting

up the PS Move API (figure 4.3).

49

hidapi abstracts away enumerating and opening devices. In situations where enumeration was

not working as expected, patches were contributed upstream1.

OpenCV

• Mandatory: no (required for Tracker module)

• Usage: Camera input and image processing in Tracker module

• License: BSD

The OpenCV library [14] is used for abstraction of the camera input and image manipulation

operations necessary to track the controller in the camera image. The modules core, imgproc

and highgui are used by the PS Move API implementation. For the camera calibration applica-

tion, the calib3d module is used, but it is otherwise optional (and not used in the tracker library

itself).

Madgwick’s AHRS Algorithm

• Mandatory: no (required for orientation)

• Usage: Convert inertial sensor data into 3D rotation quaternion

• License: GNU GPL

Sebastian Madgwick’s open source AHRS algorithm [21] is used for orientation tracking us-

ing the inertial sensor data from the controller. The code was slightly modified to allow for mul-

tiple controllers to be tracked (the reference implementation assumes that only one IMU/AHRS

is used), and therefore is shipped with the PS Move API source code in external/Madgwick-

AHRS/.

OpenGL Mathematics

• Mandatory: no (required for sensor fusion)

• Usage: Matrix operations for sensor fusion

• License: MIT

The OpenGL Mathematics library [7] provides a header-only C++ implementation of OpenGL

data types (matrices, vectors, etc...). This library is used in the sensor fusion module to carry

out calculations of the modelview and projection matrices without depending on the OpenGL

implementation (fixed function pipeline) itself. In the sensor fusion module, the modules used

are: glm.hpp, gtc/matrix_transform.hpp, gtc/quaternion.hpp and gtc/type_ptr.hpp.

1hidapi pull request 62, https://github.com/signal11/hidapi/pull/62, retrieved 2012-11-26

52

iniparser

• Mandatory: no (required for Tracker module)

• Usage: Backup and restore of camera settings

• License: MIT

This small C library written by Nicolas Devillard can read and write .ini-style configuration

files. It is currently used only in the camera control part of the tracker module to save and restore

the camera configuration parameters.

TUIO_CPP

• Mandatory: no (required only for TUIO server application)

• Usage: TUIO protocol implementation

• License: GNU GPLv2 or later

For the TUIO server example application, an implementation of the TUIO protocol is needed.

The reference C++ implementation by Martin Kaltenbrunner [17] is available for this purpose,

and is used in the TUIO server. The PS Move API libraries don’t link against the TUIO library,

only the TUIO server application.

4.3 Public Modules

This section describes all modules that have public headers for use by developers utilizing the

API. The libraries are listed in order of dependence: The Core module does not depend on any

of the other modules, the Tracker module depends on the Core modules and the Fusion module

depends on both the Core and the Tracker modules.

PS Move Core (include/psmove.h, src/psmove.c)

The API documentation of this module can be found in appendix A (section A.1).

• Provides: Controller connectivity, PSMove handle

• Library dependencies: hidapi, Bluetooth

• Internal dependencies: Calibration, Orientation

This module provides the PSMove object type, as well as essential structs, typedefs and

symbolic constants. The PSMove object type is an opaque struct representing a connection to a

single controller. The module also provides core functions for pairing and communicating with

the controller, as well as setting LEDs and reading sensors.

53

This module makes use of the internal modules for calibration and orientation (see section

4.4 for details), and exposes an API on the PSMove object type for using calibration and ori-

entation data (it is usually not useful for users to deal with separate calibration and orientation

objects manually).

As far as library dependencies are concerned, the PS Move Core module has a direct de-

pendency on hidapi and the platform-specific Bluetooth libraries (for getting the host controller

Bluetooth address). The Core module also includes platform-specific code (in src/platform/)

for certain features, such as camera detection on Linux or platform-specific registration of con-

trollers in the Bluetooth stack (see section 4.8).

This module also implements the Move-specific HID Protocol for receiving input reports

and sending LED updates. A detailed description of this protocol can be found in appendix B.

PS Move Tracker (include/psmove_tracker.h, src/tracker/psmove_tracker.c)

The API documentation of this module can be found in appendix A (section A.2).

• Provides: Camera connectivity, PSMoveTracker handle, vision tracking

• Library dependencies: OpenCV, iniparser

• Internal dependencies: Core

This module links against OpenCV and the PS Move API Core and encapsulates all features

required to track motion controllers using a camera by providing the PSMoveTracker object

type. It takes care of detecting the connected camera, setting up the camera source (configuring

exposure and other parameters) and doing the tracking of the camera image itself. It returns

the size and coordinates of detected spheres. This library is optional and only used when 3D

positioning is required.

The camera parameters are saved before being modified (using iniparser), and are restored

when the application quits (this makes sure that the low exposure settings used in the PS Move

API are not affecting the normal webcam usage of the camera device when the PS Move API is

not running).

The Tracker module implements the tracking algorithms described in section 3.5.

PS Move Fusion (include/psmove_fusion.h, src/tracker/psmove_fusion.cpp)

The API documentation of this module can be found in appendix A (section A.3).

• Provides: Sensor fusion (position and rotation matrices), PSMoveFusion handle

• Library dependencies: OpenGL Mathematics (glm)

• Internal dependencies: Core, Tracker

54

This module depends on both the Core and Tracker libraries, and implements the sensor

fusion part of the library by providing the PSMoveFusion object type. The library can be used

to create an OpenGL-based 3D application, and already provides functions to get the projection

matrix (for the intrinsic camera parameters) and the modelview matrix (for the controller ori-

entation and position) to do OpenGL rendering. When using the controller-specific modelview

matrix returned by this module, the coordinate system origin will be at the controller sphere’s

center, and will be aligned with the controller’s position.

Matrix calculations are carried out by the OpenGL Mathematics library, which becomes a

dependency if the Sensor Fusion module should be used. Internally, this module depends on

both the Core and Tracker modules.

4.4 Private Modules

The following modules are only used internally, their functionality is exposed via the Public

APIs above. Their documentation here serves as guide for developers wanting to modify or

improve the PS Move API itself.

Calibration (src/psmove_calibration.h, src/psmove_calibration.c)

• Provides: Saving, loading and interpretation of inertial sensor calibration data (accelerom-

eter + gyroscope)

• Library dependencies: None

• Internal dependencies: Core

This modules takes care of saving and loading the calibration blob (it can only be saved

during a USB connection, which usually happens during USB pairing). Also, the module im-

plements the interpretation of the calibration blob, and provides mapping functions from raw

accelerometer and gyroscope values to the calibrated values.

Orientation (src/psmove_orientation.h, src/psmove_orientation.c)

• Provides: 3D orientation tracking from inertial sensors

• Library dependencies: Madgwick AHRS

• Internal dependencies: Core, Calibration

The Orientation module wraps the AHRS algorithm and provides means to reset the orien-

tation to a known “good” orientation (e.g. when the controller points towards the camera). It

depends on the Calibration module for getting calibrated sensor readings, and returns the orien-

tation in quaternion representation.

55

Move Daemon Client (moved_client.h, moved_client.c in src/daemon/)

• Provides: Client-side interface to a remote Move Daemon

• Library dependencies: Sockets API

• Internal dependencies: None

This library implements a low-level C library for interfacing with remote Move Daemon

instances (see section 4.7) via the Move Daemon Protocol. The Move Daemon Protocol is a

UDP-based protocol that can be used to forward HID requests from a client application to a

remote host.

The PS Move API Core supports connecting to controllers using this protocol, and the Move

Daemon application is supplied as part of the PS Move API package.

Move Daemon Monitor (moved_monitor.h, moved_monitor.c in src/daemon/)

• Provides: Connection event monitoring (Linux only for now)

• Library dependencies: Linux Input, libudev

• Internal dependencies: None

This library implements a connection monitor that can detect newly-connected and removed

devices while an application is running. Right now, the implementation is only available in

Linux using libudev, but the API has been kept general enough that future improvements could

add implementations for other systems using the same function signatures.

When running the Move Daemon on Linux, this library takes care of informing the Move

Daemon when new devices connect or existing devices disconnect, so that the Move Daemon

can re-enumerate and add the device on the fly during runtime. This method works on all Linux

hosts where moved is running, even if the client machines themselves do not run Linux.

4.5 Language Bindings

Only the SWIG-based language bindings are described in this section. The OpenTracker mod-

ule is described in section 5.8 and the deprecated bindings (UniMove and PSMoveQt) are not

documented here, as they should not be used in new projects.

Most of the code examples in this section are also available (in slightly extended form) in the

folder examples/ in the PS Move API Git source tree - these examples can be used as a starting

point for custom applications.

Java

The Java bindings generated by SWIG utilize JNI [6] to expose the C Library functions to

the Java Virtual Machine. As Java does not support features such as reference parameters or

pointers for primitive data types, single-element arrays have to be used as a workaround where

56

pointers are used in the C library (e.g. multi-value functions such as the gyroscope functions).

Also, module-global functions such as psmove_count_connected() are exposed as static mem-

ber functions of the class io.thp.psmove.psmoveapi. Apart from these technical differences, the

Java library maps the C API closely.

The following two code examples show you how to read sensor values from the controller

with single-element arrays, and how to use the Tracker library together with the Core library to

get the controller position in the camera image. Advanced features such as obtaining the camera

image are also possible, but they will be demonstrated in the Processing code examples.

Code Example: Sensor Reading

This example shows how to count the connected controllers, how to connect to a PS Move

controller and read calibrated inertial sensor values from the controller into the Java application:

1 i m p o r t i o . t h p . psmove . PSMove ;

2 i m p o r t i o . t h p . psmove . Frame ;

3 i m p o r t i o . t h p . psmove . psmoveapi ;

4

5 p u b l i c c l a s s Se nso rR e ad ing {

6 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {

7 i n t c o n n e c t e d = psmoveapi . c o u n t _ c o n n e c t e d () ;

8 System . o u t . p r i n t l n (" Connec ted c o n t r o l l e r s : " + c o n n e c t e d) ;

9

10 PSMove move = new PSMove () ;

11 f l o a t [] ax = { 0 . f } , ay = { 0 . f } , az = { 0 . f } ;

12 f l o a t [] gx = { 0 . f } , gy = { 0 . f } , gz = { 0 . f } ;

13 f l o a t [] mx = { 0 . f } , my = { 0 . f } , mz = { 0 . f } ;

14

15 w h i l e (t r u e) {

16 w h i l e (move . p o l l () != 0) {

17 move . g e t _ a c c e l e r o m e t e r _ f r a m e (Frame . Frame_SecondHalf ,

18 ax , ay , az) ;

19 move . g e t _ g y r o s c o p e _ f r a m e (Frame . Frame_SecondHalf ,

20 gx , gy , gz) ;

21 move . g e t _ m a g n e t o m e t e r _ v e c t o r (mx , my , mz) ;

22 System . o u t . f o r m a t (" ax : %.2 f ay : %.2 f az : %.2 f " ,

23 ax [0] , ay [0] , az [0]) ;

24 System . o u t . f o r m a t (" gx : %.2 f gy : %.2 f gz : %.2 f " ,

25 gx [0] , gy [0] , gz [0]) ;

26 System . o u t . f o r m a t (" mx : %.2 f my : %.2 f mz : %.2 f \ n " ,

27 mx [0] , my [0] , mz [0]) ;

28 }

29 }

30 }

31 }

In line 7 and 8, the number of connected controllers is obtained and printed. Line 10 connects

to the first available Move controller. Lines 11 to 13 create single-element arrays for the three-

axis accelerometer, three-axis gyroscope and three-axis magnetometer. Lines 15 and 16 are the

main loops - line 15 is an infinite loop - in it you could do other processing, like updating the

57

GUI. Line 16 makes sure that all queued updates are read from the controller (it will return 0

when no more updates have been read). Lines 17 to 21 use the single-element arrays to obtain

the calibrated sensor readings, and lines 22 to 27 print out these values on the console.

In Java, there is no need to close the controller connection, as this will be done automatically

when the PSMove object is garbage-collected.

Code Example: Vision Tracker

This example shows how to get a PSMoveTracker object and how to interface it with an existing

PSMove object by enabling tracking and getting the current position and size of the controller

in the tracked image. Advanced features such as mirroring the camera image from the tracker

are also demonstrated, these are optional, but make sense for use cases where the user interacts

with the on-screen picture. Mirroring changes the appearance of the tracker image, and also the

X coordinate of the controller in the position results:

1 i m p o r t i o . t h p . psmove . PSMove ;

2 i m p o r t i o . t h p . psmove . Frame ;

3 i m p o r t i o . t h p . psmove . psmoveapi ;

4

5 i m p o r t i o . t h p . psmove . PSMoveTracker ;

6 i m p o r t i o . t h p . psmove . S t a t u s ;

7

8 p u b l i c c l a s s T r a c k e r {

9 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {

10 i n t c o n n e c t e d = psmoveapi . c o u n t _ c o n n e c t e d () ;

11 System . o u t . p r i n t l n (" Connec ted c o n t r o l l e r s : " + c o n n e c t e d) ;

12

13 PSMoveTracker t r a c k e r = new PSMoveTracker () ;

14 PSMove move = new PSMove () ;

15

16 / / M i r r o r t h e camera image

17 t r a c k e r . s e t _ m i r r o r (1) ;

18

19 w h i l e (t r a c k e r . e n a b l e (move) != S t a t u s . Tracker_CALIBRATED) ;

20

21 w h i l e (t r u e) {

22 t r a c k e r . upda t e_ image () ;

23 t r a c k e r . u p d a t e () ;

24

25 i f (t r a c k e r . g e t _ s t a t u s (move) == S t a t u s . Tracker_TRACKING) {

26 f l o a t [] x = { 0 . f } , y = { 0 . f } , r a d i u s = { 0 . f } ;

27 t r a c k e r . g e t _ p o s i t i o n (move , x , y , r a d i u s) ;

28 System . o u t . f o r m a t (" x : %5.2 f y : %5.2 f r a d i u s : %5.2 f \ n " ,

29 x [0] , y [0] , r a d i u s [0]) ;

30 } e l s e {

31 System . o u t . p r i n t l n (" Not t r a c k i n g . ") ;

32 }

33 }

34 }

35 }

58

As in the previous code example, lines 10 and 11 output the number of currently-connected

controllers. Line 13 creates a new PSMoveTracker object that manages the camera connection.

Even if multiple controllers are used, only one tracker object is needed.

Line 14 creates a new PSMove object (for the first connected PS Move Motion Controller).

Line 17 tells the tracker to mirror the camera image and all calculations based on it. Line 19

registers the controller with the tracker, which starts the blinking calibration. When the blinking

calibration is successful, the enable() function returns Status.Tracker_CALIBRATED. If not, the

application will try again until the controller is calibrated.

Line 21 starts the main loop. In the main loop, we have to grab a new image from the camera

(line 22) and use that image to find the controller (line 23). If the controller is currently tracked

(line 25), the position is obtained and printed (lines 26 to 28). If not, tracking is not available

currently (e.g. because the controller is not visible), an information message is printed (line 31).

Also here, both the tracker and move objects do not have to be explicitly closed or freed -

the connection will be closed when the objects are garbage-collected.

Processing

The Processing library uses the Java bindings, and adds a special packaging layout on top of

it that allows the PS Move to be used in Processing [10]. The bindings have been contributed

by the open source community (justinb26, Jules Fennis and Raphaël de Courville) based on the

Java bindings.

The bindings have been successfully tested on Mac OS X and Linux, and are expected to

work on Windows as well. Version 1.5.1 of Processing was used to create and test the example

code listed below - it should also work with version 2.0, but at the time of writing, only beta

versions of Processing 2.0 have been available.

Code Example: Displaying the Camera Image

To demonstrate the usage and advantage of the Processing bindings here, a simple Processing

application using the PS Move and the Tracker module is shown on the next page.

First, the PS Move API Java bindings are imported (line 1). Then, the objects for the con-

troller (line 3), the tracker (line 4), the pixel data (line 5) and the Processing-specific image

object (PImage, line 6) are declared.

Line 8 starts the setup() block - this will be called once by the Processing runtime when the

application is started. The window size is set to 640x480 (line 9), and the connection to the

controller and tracker are set up (lines 10 to 13). Finally, in line 14 the blinking calibration is

initialized and will be tried until the calibration is successful.

Line 17 starts the draw() block - this block will be called every time a new frame needs to

be drawn from Processing. In line 18 and 19, the camera image is updated and processed inside

the tracker. In line 21, an object describing the camera RGB image is obtained. Lines 22 to 23

allocate a new byte array the first time it is needed. Then, the pixel data is retrieved from the

RGB image object and stored into the byte array. Lines 26 to 28 create a new RGB image in

Processing the first time it is needed. Lines 29 to 33 demonstrate how to load the pixel data from

the byte array into the Processing PImage. Finally, in line 34, the camera image is displayed.

59

1 i m p o r t i o . t h p . psmove . ∗ ;

2

3 PSMove move ;

4 PSMoveTracker t r a c k e r ;

5 b y t e [] p i x e l s ;

6 PImage img ;

7

8 vo id s e t u p () {

9 s i z e (6 4 0 , 480) ;

10 move = new PSMove () ;

11 move . s e t _ l e d s (2 5 5 , 255 , 255) ;

12 move . u p d a t e _ l e d s () ;

13 t r a c k e r = new PSMoveTracker () ;

14 w h i l e (t r a c k e r . e n a b l e (move) != S t a t u s . Tracker_CALIBRATED) ;

15 }

16

17 vo id draw () {

18 t r a c k e r . upda t e_ image () ;

19 t r a c k e r . u p d a t e () ;

20

21 PSMoveTrackerRGBImage image = t r a c k e r . ge t_ image () ;

22 i f (p i x e l s == n u l l) {

23 p i x e l s = new b y t e [image . g e t S i z e ()] ;

24 }

25 image . g e t _ b y t e s (p i x e l s) ;

26 i f (img == n u l l) {

27 img = c r e a t e I m a g e (image . ge tWid th () , image . g e t H e i g h t () , RGB) ;

28 }

29 img . l o a d P i x e l s () ;

30 f o r (i n t i =0 ; i <img . p i x e l s . l e n g t h ; i ++) {

31 img . p i x e l s [i] = c o l o r (p i x e l s [i ∗3] & 0xFF , p i x e l s [i ∗3+1] & 0xFF ,

p i x e l s [i ∗3+2] & 0xFF) ;

32 }

33 img . u p d a t e P i x e l s () ;

34 image (img , 0 , 0) ;

35 }

Python

Python is an interpreted high-level programming language with dynamic typing. It is especially

useful for quickly prototyping code, but it can also be used for real-world production code.

Like Java, Python does not support reference parameters of local primitive variables, but does

support multi-value returns by means of tuples. This is used in the SWIG-based bindings to

return multiple values to the caller, such as for the gyroscope readings.

Code Example: Fading Colors

This examples fades the LED color between red and green, it uses only the core library of the PS

Move API, and therefore even works with the controller connected via USB (no sensors used):

60

1 i m p o r t t ime

2 i m p o r t math

3 i m p o r t psmove

4

5 move = psmove . PSMove ()

6

7 i = 0

8 w h i l e True :

9 r = i n t (128 + 128∗math . s i n (i))

10 move . s e t _ l e d s (r , 255 − r , 0)

11 move . u p d a t e _ l e d s ()

12 t ime . s l e e p (0 . 1)

13 i += 0 . 2

Lines 1 to 3 import the required modules: The time module is used for the sleep() method,

the math module is used for the sine function. The psmove module is the binding module for

the PS Move API. In line 5, a connection to the first available controller is created. Lines 7, 8

and 13 describe a loop with the loop variable i going from 0 to infinity, with a step of 2. In the

loop body (lines 9 to 12), a color value is calculated and then sent to the controller. In line 12,

the program sleeps for 0.1 seconds to control the speed at which LED updates are sent.

Code Example: Calibrated Sensor Values

Similar to the Java code examples, this code example basically does the same thing - it retrieves

the calibrated sensor values from the controller and outputs them. An important aspect here is

that instead of using single-element arrays by reference like in Java, Python has the ability to

return multiple values as tuples, and can unpack these tuples using the syntax shown in the code

example. This method is used throughout the SWIG-based Python bindings:

1 i m p o r t psmove

2

3 move = psmove . PSMove ()

4

5 w h i l e True :

6 i f move . p o l l () :

7 ax , ay , az = move . g e t _ a c c e l e r o m e t e r _ f r a m e (psmove . Frame_SecondHalf)

8 gx , gy , gz = move . g e t _ g y r o s c o p e _ f r a m e (psmove . Frame_SecondHalf)

9

10 p r i n t ’A: %5.2 f %5.2 f %5.2 f ’ % (ax , ay , az) ,

11 p r i n t ’G: %6.2 f %6.2 f %6.2 f ’ % (gx , gy , gz)

In line 1, the PS Move API module is imported. Line 3 creates a connection to the default

controller. Lines 5 and 6 describe the main loop. Line 7 retrieves the second half-frame of the

calibrated accelerometer reading from the controller and stores it as three float values in ax, ay

and az. Line 8 does the same thing for the gyroscope values. Lines 10 and 11 then print the

readings on standard output.

61

C#

The C# bindings are in a way similar to the Java bindings, except that C# does have support for

out parameters and reference parameters, so these features are supported by the PS Move API

bindings for C#. As everything else is similar to the Java bindings, only one code example is

shown here, demonstrating the out parameter usage for the Tracker module.

Code Example: Vision Tracker

This example is mostly equivalent to the vision tracker example of Java, but uses C#-specific

features such as out parameters:

1 u s i n g System ;

2 u s i n g i o . t h p . psmove ;

3

4 p u b l i c c l a s s T r a c k e r {

5 p u b l i c s t a t i c i n t Main (s t r i n g [] a r g s) {

6 PSMoveTracker t r a c k e r = new PSMoveTracker () ;

7 PSMove move = new PSMove () ;

8 w h i l e (t r a c k e r . e n a b l e (move) != S t a t u s . Tracker_CALIBRATED) ;

9

10 w h i l e (t r u e) {

11 t r a c k e r . upda t e_ image () ;

12 t r a c k e r . u p d a t e () ;

13

14 i f (t r a c k e r . g e t _ s t a t u s (move) == S t a t u s . Tracker_TRACKING) {

15 f l o a t x , y , r a d i u s ;

16 t r a c k e r . g e t _ p o s i t i o n (move , o u t x , o u t y , o u t r a d i u s) ;

17 Conso le . W r i t e L i n e (s t r i n g . Format (" T r a c k i n g : x : { 0 : 0 . 0 0 0 } , " +

18 " y : { 1 : 0 . 0 0 0 } , r a d i u s : { 2 : 0 . 0 0 0 } " , x , y , r a d i u s)) ;

19 } e l s e {

20 Conso le . W r i t e L i n e (" Not T r a c k i n g ! ") ;

21 }

22 }

23

24 r e t u r n 0 ;

25 }

26 } ;

In lines 1 and 2, the required modules are imported. Lines 6 to 8 create the tracker in-

stance and the controller instance, and start the blinking calibration for the controller until it

succeeds. Lines 11 and 12 update the controller tracking information. If the controller is cur-

rently tracked (line 14), the position and radius of the controller are obtained via out parameters

of the get_position() function call (lines 15 to 17) and output. If the controller is not tracked, an

information message is printed on the console.

4.6 Build System

CMake [13] is used as the build system for the PS Move API. It is an open source meta-build

system that can target multiple build environments such as make, Xcode or Visual Studio. For

62

official PS Move API builds, GNU make is used on Linux and Mac OS X – on Windows,

MinGW make is used.

To build the PS Move API, it is usually sufficient to issue the following commands in a shell

in the PS Move API source directory:

1 mkdir b u i l d

2 cd b u i l d

3 cmake . .

After that, CMake will look for required dependencies and output the build configuration:

1 B u i l d c o n f i g u r a t i o n

2 Debug b u i l d : No

3 T r a c k e r l i b r a r y : Yes

4

5 Language b i n d i n g s

6 Python : Yes

7 J ava : Yes

8 C# : No (d i s a b l e d)

9 P r o c e s s i n g : Yes

10 Qt : No (d i s a b l e d)

11

12 T r a c k e r

13 PS Eye s u p p o r t : Yes

14 HTML t r a c i n g : Yes

15 Use CL Eye SDK: No (Windows on ly)

16

17 A d d i t i o n a l t a r g e t s

18 C example apps : Yes

19 OpenGL examples : Yes

20 C t e s t p rograms : Yes

21 C++ TUIO s e r v e r : Yes

22

23 −− C o n f i g u r i n g done

24 −− G e n e r a t i n g done

25 −− B u i l d f i l e s have been w r i t t e n t o : / home / t h p / s r c / psmoveapi / b u i l d

You can use the “ccmake” (CMake Curses UI) or “CMake GUI” applications to modify

this configuration. If options are enabled, but their dependencies can not be satisfied, the build

configuration screen will point out the missing dependencies.

Some configuration options change the behavior of the resulting libraries:

• PSMOVE_USE_CL_EYE_SDK: On Windows, use the CL Eye SDK instead of the nor-

mal OpenCV-based image capture mechanism.

• PSMOVE_USE_DEBUG: Print additional verbose debug output at runtime. This is use-

ful for development and debugging.

• PSMOVE_USE_DEBUG_CAPTURE: Display captured camera images with OpenCV

(for debugging exposure and dimming code). Do not use this option when using another

GUI toolkit, such as Qt.

63

• PSMOVE_USE_LOCAL_OPENCV: Prefer a local OpenCV checkout and build (in

$PSMOVEAPI_SOURCE_DIR/opencv/) over a system-wide OpenCV installation (this

is used for the release builds).

• PSMOVE_USE_PSEYE: Compile with additional code for the PS Eye camera (e.g. cam-

era detection code on Linux). Disable if you do not plan on using the PS Eye camera.

• PSMOVE_USE_TRACKER_TRACE: Compile the tracker module with HTML tracing

support. When this option is enabled, the tracker will store screenshots of the blinking

calibration in $HOME/.psmoveapi/.

Other options to disable or enable building language bindings and test and example pro-

grams, as well as disabling the building of the tracker module are also available and are described

in the CMake GUI application or by using cmake in wizard mode using “cmake -i”.

4.7 The Move Daemon (moved)

The Move Daemon - moved - acts as a UDP-based network service that will expose the con-

trollers connected to the local machine to a local network. It was originally developed to keep

L2CAP connections open on Linux before the current way of going through Bluez/hidraw was

used, and has been enhanced in January 2012 during the Nording Game Jam for developing an

application that interfaces with more than 7 Motion Controllers in parallel (7 devices is the the-

oretical maximum of controllers connected to a single Bluetooth adapter, on some more recent

MacBook Pros on Mac OS X, we were able to connect up to 9 controllers to a single machine,

whereas older laptops maxed out at 5 devices).

The PS Move API has built-in support for interfacing with moved instances running on

remote hosts, see appendix C for details on the protocol.

On Linux, moved utilized libudev to get real-time notifications of removed and newly-added

controllers. New controllers will show up to remote hosts as soon as they are connected, devices

connected via USB will be paired automatically (using psmove_pair()). This allows the Move

Daemon to run as unattended server on a headless system, exposing connected devices via the

local network.

On all other operating systems, moved will have to be restarted when controllers are added

and removed. Because the UDP protocol is stateless, clients will usually continue working,

but the order of controllers might change, and clients should be implemented in a way that can

handle a reordering of controllers.

A very common use case of the Move Daemon is to pair controllers to a Linux or Mac OS

X host (for which known “good” pairing procedures exist), and use the services of that host

on a Windows machine via an Ethernet connection (currently there is no reliable procedure for

pairing the controller on Windows).

64

The “moved-hosts.txt” File

The client library uses the file moved-hosts.txt in the PS Move API data directory (.psmoveapi,

which is located in the $HOME directory on Linux and Mac OS X, and in %APPDATA% on

Windows) to determine which (if any) remote hosts to try to connect to using the moved protocol.

The file has a simple text file, with one host per line. On Windows, this must be an IP address,

on Linux and Mac OS X you can use either an IP address or a hostname that will be resolved at

runtime.

4.8 Controller Bluetooth Pairing via USB

In the library, the pairing process is implemented in the psmove_pair() function. For most

use cases, users will want to use the supplied psmovepair utility that takes care of pairing all

controllers currently connected via USB. It also supports pairing to a different host by accepting

an alternative Bluetooth host as command-line argument. The API function for using a custom

address is psmove_pair_custom(), but in general using the psmovepair utility is sufficient.

On Linux, the Move Daemon (moved) has built-in support for pairing USB controllers once

they are connected by monitoring connects and disconnects via libudev. It is possible to have

the same behavior on other operating systems as well, but it has not yet been implemented as

part of this project.

The “psmovepair” Utility

The pairing utility is used for pairing a controller via USB to the host machine, so that the

controller will connect to the correct machine when switched on. By default, the host ad-

dress that will be written to the controller will be determined by a method that is specific to

the operating system in use (on Linux: libbluetooth, on Windows: libbthprops, on Mac OS X:

IOBluetooth). If a command line argument is supplied, it should be a host address in the format

“AA:BB:CC:DD:EE:FF”. This address will be used as the host address for pairing (see section

3.3 for more information).

On Linux, the psmovepair utility has to be run as root or using sudo, because it automat-

ically restarts the Bluetooth Daemon and writes the pairing information into bluetoothd’s state

files - this makes sure that connections from the controller are always accepted and work prop-

erly (no manual steps for pairing are necessary after pairing on Linux with this method).

On Mac OS X, the utility will add the right entries to the system configuration. This has

been tested on Mac OS X 10.8, and is not needed for Mac OS X 10.6. On Mac OS X 10.7, it

should also work, but might require pairing the controller twice before it works.

Pairing on Mac OS X

The following section applies to Mac OS X 10.7.3 and newer. Older versions of Mac OS X do

not require special entries when pairing - as soon as the controller has been pair via USB, OS

X will allow HID connections without any additional warnings/questions. This has most likely

65

been seen as a security issue, and this is why pairing on OS X 10.7.3 and newer requires the

steps outlined in this section.

Mac OS X ships with its own proprietary Bluetooth stack. Bluetooth is well-supported

in Mac OS X, and there are no alternative Bluetooth stacks that are used. The system-wide

configuration file that stores information about the paired HID devices is

/Library/Preferences/com.apple.Bluetooth.plist

This file is stored in Binary PList format. On Mac OS X, the command-line “plutil” applica-

tion can be used to convert it to an XML PList file that can be opened and edited with a normal

text editor. In addition to editing the file directly, the “defaults” command can be used to view

and modify the values directly. For example, the following command lists all paired Bluetooth

HID devices2:

1 d e f a u l t s r e a d \

2 / L i b r a r y / P r e f e r e n c e s / com . a p p l e . B l u e t o o t h \

3 HIDDevices

An example output of this command could look like this:

1 (

2 " e0−ae−5e−00−00−00",

3 " e0−ae−5e−aa−bb−cc " ,

4 "00−06− f7 −22−11−00",

5)

For adding entries to this list, it is important that the Mac OS X Bluetooth Daemon (blued)

is shut down, otherwise it will not load the updated configuration and even overwrite it when it

is shut down or restarted. There are several ways to shut down the Bluetooth Daemon:

• Use the Bluetooth Applet in the menu bar to turn Bluetooth off

• Kill the “blued” binary from the command line

• Use the private API function IOBluetoothPreferenceSetControllerPowerState in the IOBlue-

tooth framework (only on OS X 10.7 and newer)

The first two options usually require user interaction, while the third option is ideal for

automatically shutting down and re-activating Bluetooth in a C application. The PS Move API

implementation therefore uses the private API functions from the IOBluetooth framework.

After Bluetooth has been shut down, the Bluetooth address of the controller needs to be

added to the HIDDevices section of the com.apple.Bluetooth.plist file. This can be accomplished

by running the following command as privileged (root) user:

1 d e f a u l t s w r i t e \

2 / L i b r a r y / P r e f e r e n c e s / com . a p p l e . B l u e t o o t h \

3 HIDDevices −a r r a y−add aa : bb : cc : dd : ee : f f

2the “defaults” command omits the .plist extension

66

Where “aa:bb:cc:dd:ee:ff” is the Bluetooth address of the controller to be added. After that,

Bluetooth can be started again and the controller will be able to connect to the Mac OS X

computer.

To summarise, the steps required to register a controller in Mac OS X are:

1. Use “defaults read” to check if the controller is already paired - if so, we’re done

2. If not, shutdown Bluetooth using the IOBluetooth private APIs

3. Wait for the “blued” process to shutdown (this is required on Mac OS X 10.8 to avoid a

race condition with caching)

4. As superuser, add the controller’s Bluetooth address using “defaults write”

5. Switch Bluetooth on again using the IOBluetooth private APIs

6. Press the PS Button to connect the controller

The implementation of this process and OS X-specific helper functions can be found in the

PS Move API source tree in src/platform/psmove_osxsupport.m

Pairing on Linux

The default Bluetooth stack on Linux is Bluez [1]. Bluez consists of various utilities and libraries

- for PS Move pairing, the important components are:

• bluetoothd - The Bluetooth Daemon, handling connections from Bluetooth devices and

taking care of authentication and setting up connections. When pairing a PS Move Motion

Controller, we need to add its Bluetooth address to bluetoothd’s configuration in order for

bluetoothd to accept connections and set up the controller as HID device.

• libbluetooth - A userspace library that exposes Bluetooth functions to end-user applica-

tions. We use it to determine the Bluetooth host address of the computer for the pairing

process.

The state of bluetoothd is usually stored in /var/lib/bluetooth/ in a separate directory for

each Bluetooth host adapter on the system (usually, there’s just one host adapter installed). The

adapter-specific directory contains various plaintext files, with one line per entry. For the pur-

poses of pairing a PS Move Motion Controller, the important files are:

• classes - This file has to have an entry with the value “0x002508” for each paired PS Move

Motion Controller.

• did - This file has to have an entry with the value “0000 054C 03D5 0000” for each paired

PS Move Motion Controller. The values represent the HID product and vendor ID, and

are used in the hidapi enumeration process to determine if a given hidraw device is a PS

Move Motion Controller or some other HID device.

67

• features - This file has to have an entry with the value “BC04827E08080080” for each

paired PS Move Motion Controller.

• names - This file has to have an entry with the value “Motion Controller” for each paired

PS Move Motion Controller.

• profiles - This file has to have an entry with the UUID of the Bluetooth HID profile for

each paired PS Move Motion Controller: 00001124-0000-1000-8000-00805f9b34fb

• sdp - This file has to contain an SDP entry string for each PS Move Motion Controller

(see below).

• trusts - This file has to have an entry with the value “[all]“ for each paired PS Move

Motion Controller. If this entry is not present, the Bluetooth Agent will ask for permission

when the controller tries to connect to the host computer.

The entry in the sdp file has to have the following value (as the bluetoothd state files are

one-line-per-entry plaintext files, this entry has to be typed all in one line, with a space only

between “#00010000” and the rest of the entry):

1 #00010000

2 3601920900000 A000100000900013503191124090004350D35061901000

3 900113503190011090006350909656 E09006A0901000900093508350619

4 112409010009000 D350F350D35061901000900133503190011090100251

5 3576972656 C65737320436F6E74726F6C6C65720901012513576972656C

6 65737320436 F6E74726F6C6C6572090102251B536F6E7920436F6D70757

7 4657220456 E7465727461696E6D656E7409020009010009020109010009

8 02020800090203082109020428010902052801090206359 A35980822259

9 405010904 A101A102850175089501150026FF0081037501951315002501

10 3500450105091901291381027501950 D0600FF8103150026FF000501090

11 1 A10075089504350046FF0009300931093209358102C005017508952709

12 0181027508953009019102750895300901 B102C0A102850275089530090

13 1B102C0A10285EE750895300901B102C0A10285EF750895300901B102C0

14 C0090207350835060904090901000902082800090209280109020A28010

15 9020 B09010009020C093E8009020D280009020E2800

In summary, a properly-paired controller with the Bluetooth address AA:BB:CC:DD:EE:FF

would show up in the configuration of a host adapter 00:11:22:33:44:55 like this:

1 / v a r / l i b / b l u e t o o t h / 0 0 : 1 1 : 2 2 : 3 3 : 4 4 : 5 5 % gr e p −r AA:BB:CC:DD: EE : FF ∗

2 p r o f i l e s :AA:BB:CC:DD: EE : FF 00001124−0000−1000−8000−00805 f 9 b 3 4 f b

3 m a n u f a c t u r e r s :AA:BB:CC:DD: EE : FF 10 3 6735

4 l a s t u s e d :AA:BB:CC:DD: EE : FF 2012−09−14 1 3 : 3 7 : 0 7 GMT

5 c l a s s e s :AA:BB:CC:DD: EE : FF 0 x002508

6 f e a t u r e s :AA:BB:CC:DD: EE : FF BC04827E08080080

7 names :AA:BB:CC:DD: EE : FF Motion C o n t r o l l e r

8 sdp :AA:BB:CC:DD: EE : FF#00010000 3601920900000 A0001000 . . .

9 d i d :AA:BB:CC:DD: EE : FF 0000 054C 03D5 0000

10 t r u s t s :AA:BB:CC:DD: EE : FF [a l l]

68

Note that the entries in manufacturers and lastused have not been mentioned above, be-

cause their values can be determined and saved by Bluez itself when the controller connects.

Setting these values is not required for proper pairing of the controller.

Android also uses Bluez, but the state files are stored in /data/misc/bluetoothd/.

In general, users on Linux do not have to care about adding these entries manually, as

the library will take care of checking for these entries at pairing time and modifying/adding

wrong/missing entries. This only works if the psmovepair utility is run as root (or via sudo),

as the utility might need to start/stop bluetoothd and update files in /var/lib/bluetooth/, both of

which are usually not allowed for non-root user accounts.

Pairing on Windows

On Windows, we depend on the Microsoft Bluetooth Stack. Unfortunately, compared to the Mac

OS X and Linux stack, this stack does not store its state in files, but uses the Windows registry

instead. This makes it difficult to automate the task of pairing the controller - there is no known

way to automate the pairing of the PS Move Motion Controller on Linux. Instead, the following

trial-and-error method3 can be used:

1. Pair the PS Move via USB

2. Open Bluetooth settings (“Change Bluetooth settings”) and make sure that “Allow Blue-

tooth devices to find this computer” is enabled

3. Search for new Bluetooth devices, push the PS button and pair “without code”

4. Open the properties of the device, go to the “Services” tab and tick the checkbox for the

HID service - don’t hit Apply or OK yet!

5. Press the PS button and immediately hit Apply

6. If pairing doesn’t work at first try, retry the last two steps. If the device disappears, redo

the whole process

7. Once the device is connected via Bluetooth, the red LED on the bottom of the controller

will stay lit

Usually when the pairing has been completed successfully once, the Windows Bluetooth

Stack will remember the controller and will always allow the connection at first try. This is even

the case when the controller gets paired (via psmovepair) to another host computer and then to

the same computer again, as the PS Move Pairing functionality doesn’t really affect the state of

the Windows Bluetooth Stack.

This method has been tested and known to work at least on a 32-bit Windows 7 installation

and a 32-bit Windows 8 installation. In all these cases, it might make sense to use a Linux system

to do the Bluetooth communcation, and expose the controllers via the Move Daemon (moved)

over an Ethernet network to a Windows machine.

3http://thp.io/2010/psmove/, retrieved 2012-09-25, originally proposed by Viktor Budaházi

69

Other Bluetooth stacks and HID device drivers do exist for Windows (e.g. the BlueSoleil

stack or the MotioninJoy driver), but these are proprietary and have not been tested with the

PS Move API. In general, it’s best to use the native trial-and-error pairing method in Windows,

because it doesn’t depend on any closed source third party software, and is very reliable once

pairing succeeds.

4.9 Camera Detection and Configuration

This section describes platform-specific detection and configuration issues with the PS Eye cam-

era (on Linux and Windows) as well as the procedure for using an iSight camera on Mac OS X

as a fallback solution.

Camera Integration on Windows

On Windows, two drivers exist for the PS Eye camera: The normal “CLEye” driver that sup-

ports a single PS Eye camera and uses normal registry-based configuration parameters and the

CLEye SDK, which supports multiple cameras and has a separate API for grabbing frames and

controlling parameters.

In the PS Move API, we support both approaches, with the default one being the CLEye

camera driver, because it can be obtained by users easily, and does not require registration

on the CodeLaboratories website. Our CMake build system provides the configuration option

“PSMOVE_USE_CL_EYE_SDK” that can be enabled to enable support for the PS Eye SDK.

The user must provide the necessary SDK files and headers in order to build against the PS Eye

SDK. Apart from the tighter integration and better control over parameters (directly in the SDK

instead of relying on setting registry values), the results of using the CL Eye SDK or the CL Eye

driver are the same.

PSEye Detection on Linux

On Linux, special code is needed to detect and work with the PS Eye camera when multiple

cameras are available (this is usually the case on notebook computers with built-in webcams).

Special code has been added to the Tracker module implementation to detect the presence of a PS

Eye camera and prefer that over other cameras in the system. The code is in src/tracker/platform/

in the Git repository in the file psmove_linuxsupport.c: All available video devices have their

driver name checked (the PS Eye camera uses the “ov534” driver). When a video device with

the driver name “ov534” is found, it is preferred over other video devices - otherwise, the first

available camera device is used.

Using the iSight Camera in Mac OS X

For this project, a solution was developed with the help of Raphaël de Courville to use the built-

in iSight camera of the MacBook Pro for tracking, requiring more user interaction, but working

around the driver problems of the PS Eye on recent versions of Mac OS X.

70

On Mac OS X when using the built-in iSight camera of MacBooks and iMacs, the calibra-

tion method is a bit more complicated, because the APIs used to capture the camera image do

not allow third party developers to set the exposure. The only setting that third party applica-

tions can do is “lock” the exposure, so that it will not auto-adjust during capture, but only once

every time the camera device is opened. Because the exposure adjustment happens when the

device is opened, the user must hold the PS Move Motion Controller very close to the camera at

application startup, so that the exposure will be set to a low level, increasing tracking quality.

The steps for using the iSight camera on Mac OS X are:

• Connect the controller

• Cover the iSight camera with the sphere of the controller

• Start the example application

• The sphere lights up in white - keep it in front of the camera (the exposure auto-adjustment

is taking place)

• When the sphere turns dark, move it away from the camera to a distance of at least 50 cm

for the blinking calibration

• In some cases, the exposure adjustment does not work correctly4 - when this happens,

re-run the application and re-do the calibration (you can detect this case by looking at the

color of the sphere in the camera image - if it is very different from the real-world color

of the sphere, re-doing the calibration steps might be a good idea)

4https://github.com/thp/psmoveapi/issues/33

71

CHAPTER 5
Results

This chapters presents experimental performance and accuracy results, as well as example ap-

plications and results of integrating the library with other frameworks.

5.1 Evaluation Setup

This section describes the hardware and software used in the experiments in this chapter. For

evaluation, we use Mac OS X and Linux. Windows performance has not been tested, as the

Linux and Mac OS X ports are more stable and have a stable method of pairing Bluetooth

devices.

The point of the evaluation is to compare the performance of the algorithms implemented

on two different systems with different CPUs. The fact that the systems have different operating

systems is used only for verification that the library itself works comparably well on different

platforms (i.e. the faster machine should give faster results) and different setups.

Linux

Linux tests have been carried out using a Samsung 900X3A notebook computer with a quad-core

Intel Core i5-2537M CPU at 1.40 GHz and 4 GB RAM. Ubuntu 12.10 (32-bit) was used as the

operating system. The Kernel version used was 3.5.0-19-generic (Stock Ubuntu Kernel). A PS

Eye camera in wide angle view (blue dot) was used for image capture. OpenCV 2.3.1-11ubuntu2

(Stock Ubuntu Package) was used for image processing.

Mac OS X

Mac OS X tests have been carried out on a MacBookPro5,5 with a dual-core Intel Core 2 Duo

CPU at 2.53 GHz and 4 GB RAM. Mac OS X 10.8.2 was used as the operating system. The

built-in iSight camera was used for image capture. OpenCV 2.4.2 (from Mac OS X Homebrew)

was used for image processing.

73

of the camera, because the grab operation will then have to wait for a new frame to become

available, and take longer because of this waiting period.

Interpretation

One interesting aspect that can be taken away from these measurements is that when mirror-

ing of the X axis values is desired, but the image is never displayed to the user, it is better to

disable mirroring in the tracker (the default), and convert the coordinates manually (xmirror =
image_width−x), which will save up to 3 ms per processed frame. 3 ms is a non-trivial saving

in the tracking pipeline (see figure 5.2).

Another insight is that the number of controllers is important for the frame rate, especially

in the current single-threaded setup with slower CPUs. As the tracking operations for each con-

troller are independent from other controllers, these operations could be carried out in multiple

threads, so that each controller is tracked in a separate thread.

The controllers have not been moved during the experiment. Also, the distance of 40 cm

used in the setup means that the biggest ROI size (see section 3.5, “Region of Interest Size

Calculation”) is used. In situations where the distance from the camera to the controller is

bigger, a smaller ROI will be used, and the per-controller tracking duration will be smaller in

this case.

Comparing the Linux and Mac OS X results, it can be seen that a faster CPU can already

help a lot with keeping a good frame rate even for multiple controllers. While image processing

is faster on Mac OS X, obtaining the camera image is slighty slower, most likely because of the

lower frame rate of the iSight.

Assuming a camera frame rate of 60 FPS, the Mac OS X machine will become CPU-bound

at 3 or more controllers (56 FPS) and the Linux machine is already CPU-bound at 1 controller

(50 FPS). Using one additional thread on Mac OS X would allow all 5 controllers to be processed

(1 ms convert time + 1.5 ms tracking × 5 controllers = 8.5 ms, which is still below the average

capture duration of 12 ms) without becoming CPU-bound (assuming zero additional cost due to

multithreading overhead).

5.3 Inertial Sensor Read Performance

An important part of the quality of inertial sensor measurements is the update rate of the inertial

sensors. This describes the rate at which sensor updates can be read from the controller via

Bluetooth. The PS Move API distribution includes the utility test_read_performance that reads

data from the controller with different LED update rates. Sending LED updates to the controller

usually decreases the read performance, because the Bluetooth connection has to deal with more

data.

Half-Frames for Accelerometer and Gyroscopes

Each update described in this section actually contains two readings for the accelerometer and

the gyroscope (only one reading for the magnetometer): The most recent reading and the reading

77

Figure 5.4: Average read performance of inertial sensors. For each of the test systems (Mac

OS X and Linux), two controllers have been tested (C1 and C2), where one has been bought in

late 2010 and the other one in early 2012. The graph shows the average update rate per seconds

(average of 5 samples, where each sample is calculated from the time it takes to read 1000

updates from the controller).

before that. This effectively doubles the update rate measured here for the accelerometer and

gyroscope, resulting in a finer-grained update rate for integrating the readings over time.

Definition of Update Methods

In this section, we use different methods for updating the LEDs of the controller. The meaning

of these update methods are described here:

• None: No LED updates are sent to the controller. This means that the controller’s sphere

will be dark. This is useful in situations where visual tracking is not needed, and the

LEDs should not be used as visual indicator. This gives the maximum update rate, as the

Bluetooth connection can be used exclusively for reads.

• Static: The controller LEDs have a static color. As the controller will keep the LED lit for

4-5 seconds, the library will only send an update every 4000 milliseconds. This is useful

in combination with visual tracking and sensor fusion, where the color of the controller is

usually static.

• Smart: The controller LEDs will have their color constantly changed after every read.

The built-in rate limiting of the library is enabled to avoid unnecessary updates. The

current rate limit is set to 120 ms, meaning that when rate limiting is enabled, a LED

update will only be sent every 120 ms, and excessive updates will be ignored by the

library (not sent over Bluetooth).

78

• All: The controller LEDs will have their color constantly changed after every read. The

rate limiting is disabled, which means that every LED update is sent to the controller.

This might be desirable in certain situations where users want to send LED updates at a

higher rate than every 120 ms, but in general will cause worse read performance results

for inertial sensors.

Test Setup

For testing the performance measurements, both the Linux and the Mac OS X system were

used. For each system, two runs were carried out: One with an older PS Move Motion controller

bought in late 2010 and one with a newer controller bought in early 2012. Earlier experiments

found that the update rate differs for different controllers on the same machine, which means

that the read performance might vary between different controllers, so we used two controller

per system here to have comparable results.

In each run, one controller was connected via Bluetooth to the test machine.

The test_read_performance was used with the default settings: Each update method (None,

Static, Smart and All) is tested in 5 rounds, each round reads 1000 input reports from the con-

troller. The update rate is then calculated from the number of read reports (1000) and the total

time it took to read all input reports:

update_rate = reads
duration

The 5 update rates are then averaged to a single update rate value. The standard deviation

was not significant between runs - it is not shown here.

Measured Update Rate

Figure 5.4 shows the average update rates for each LED update method and OS/Controller com-

bination. The maximum update rate is achieved by not sending any LED updates (Method

“None”): Mac OS X achieves 83 and 87 updates per second, depending on the controller used.

On Linux, 59 and 60 updates per second can be read from each controller.

Static LED update rates are basically the same, and do not differ significantly from not

sending no LED updates. This suggests that we can use static LED updates for tracking and still

achieve the best sensor update rate.

Updating the LEDs constantly, but with rate-limiting enabled shows a reduction in update

rate: The Mac OS X update rate for controller 1 drops to 60 updates per second (from 83) and

the Linux update rates drop to 40 and 31 updates per second (from 59 and 60).

Disabing rate-limiting and updating the LEDs constantly shows a reduction in sensor update

rate for controller 1 on Mac OS X: The update rate drops to 50 updates per second (from 60 up-

dates in the rate-limited case). On Linux, the rate-limiting does not cause significant differences,

because of the way the LED updating is implemented: The LED updater thread will not buffer

any updates and only send out the latest one.

79

Interestingly, controller 2 under Mac OS X is not affected at all by the LED updates, sug-

gesting that for some controller on Mac OS X, the read performance is independent of LED

updates.

Packet Loss

The average update rate tells us the amount of updates we get for each second, but it does not

tell us the “real” update rate of the controller. With each update, the controller sends a 4-bit

sequence number, which we use here to detect dropped frames. We consider a packet lost if the

sequence number jumps between two reads (i.e. is not incremented by 1, modulo 16 to account

for 4-bit counter wrapping). While this might not be a problem in practice, having no or little

packet loss means that we read at the maximum rate that the controller sends.

In figure 5.5 the packet loss in percent is given. As an example, a packet loss of 20 percent

means that for 200 packets out of the 1000 packets received, the sequence number was not an

increment of 1 from the sequence number of the previous packet.

In the no-LED-updates case (“None”), Mac OS X has a packet loss of 3 percent and less

than 1 percent, while Linux results show 45 and 46 percent packet loss.

As with the update rates, the static LED update case, where LEDs are only updated every 4

seconds, the results are not significantly different from the no-LED-updates case.

Comparing the continous LED updates (both rate-limited and not rate-limited) shows an in-

crease in packet loss for Mac OS X - interestingly, the packet loss in Linux seems to improve

here for the rate-limited situation. One explanation for this unexpected result is that the method

of detection gives incorrect results when the distance between two updates reaches 16 frames

(the 4-bit counter would then wrap around, and give the expected incremented sequence num-

ber). The results of controller 2 on Linux shows that the packet loss rate does indeed become

worse with additional LED updates.

Again, controller 2 under Mac OS X seems not to be affected by the LED updates, and also

exhibits a packet loss of less than 1 percent (less than 10 of 1000 frames have a non-sequential

sequence number).

Interpretation

The most interesting outcome of this measurement is the behavior of controller 2 on Mac OS X.

The packet loss rate of less than 1 percent suggests that for this controller, we have reached the

hardware limit of updates, and this limit seems to be around 87 updates / second. Also, for this

controller, the update rate seems to be unaffected by the LED updates.

For all other controllers, the update rate is indeed affected by the LED update rate, so rate-

limiting the updates usually helps to keep a good sensor update rate. In general, sending a LED

update every 4 seconds (the default for vision tracking in PS Move API) does not affect the

sensor update rate.

Application developers wanting to make use of the LEDs for output or for effects should be

aware of these technical limitations if they depend on a good update rate of the inertial sensors.

For generic use cases, the built-in rate-limiting of the PS Move API will avoid problems with

the update rate, even if the application developer does not take care of limiting their updates.

80

Definition of Time Periods

In this experiment, we save the timestamp at different points in time. For the results presented

in figure 5.6, we measure the following periods:

• Off to Grab: The time from switching the LEDs off to the time the first frame is grabbed

where the tracking is lost.

• On to Grab: The time from switching the LEDs on to the time the first frame is grabbed

where the tracking is recovered.

• On to Track: The time from switching the LEDs on to the time the first frame is processed

(tracked) where the tracking is recovered.

• On to Stable: The time from switching the LEDs on to the time the frame is processed

(tracked) where the tracking is stable (position and radius have converged to their old

values).

The old value of the position and radius is known because we measure and save it before

turning the LEDs off (step 3 in the workflow).

Test Setup

This test is carried out both on the Linux system with a PS Eye camera and the Mac OS X system

with the built-in iSight camera. In both cases, a single controller is connected via Bluetooth and

placed in front of the camera (centered) and 40 cm away from the camera.

The test utility test_end2end_latency is used with default settings (100 iterations, low ex-

posure mode).

Measurements

Figure 5.6 shows the measurements taken. In general, Mac OS X has a higher latency here, even

though the machine has a faster CPU. The system latency seems to be more bound to the camera

than to the CPU performance in this case (the PS Eye must have a shorter latency than the iSight

used on the MacBook Pro used in the test).

Switching the controller off and grabbing the image where this is detected takes 92 ms (±

11 ms) on Mac OS X and 63 ms (± 4 ms) on Linux. Because losing tracking is a zero-cost

operation (compared to doing tracking recovery), switching the controller on and grabbing the

first frame where it is detected again takes slightly longer: 128 ms (± 52 ms) on Mac OS X and

64 ms (± 3 ms) on Linux. Tracking this new frame (which is required to measure and obtain the

position and radius) takes an additional 2 ms on Mac OS X and an additional 4 ms on Linux -

this additional latency is introduced by the tracking algorithm.

Finally, getting a stable position (sometimes when tracking is found, the tracker takes some

additional frames to correct and filter the position and radius information) takes 290 ms (± 55

ms) on Mac OS X and 233 ms (± 3 ms) on Linux. This latency is caused mostly by the tracking

algorithm - it gives an idea on how long it takes to get a reliable position information after

tracking is lost and then recovered.

83

it’s just used as a dummy controller for the library). It also expects the .avi file to be present in

the current working directory.

The ROI sizes that were tested were 480x480, 240x240 and 120x120 (the camera image was

640x480). The Linux system was used to carry out the tests, and the video has been recorded

using a PS Eye camera. 500 frames were processed and the measurements (tracking duration

and position for each ROI size) stored.

Captured Data

The test utility will write a CSV file “roi_size.csv” to the current directory, as well as screenshots

for every 50th frame for every ROI size. The screenshots can be used to verify and compare the

results.

Measurements

The average tracking duration in milliseconds for each ROI size is shown in figure 5.8. The error

bars represent the standard deviation based on the 500 sample frames analyzed. The ROI size of

480x480 pixels has an average tracking duration of 8.3 ms (± 0.5 ms), the ROI size of 240x240

pixels an average duration of 5.5 ms (± 1.4 ms) and the ROI size of 120x120 pixels an average

duration of 1.9 ms (± 0 ms).

Interpretation

A reduction of the ROI size by half reduces the processing overhead by 34 percent when going

from 480x480 to 240x240 and by 65 percent when going from 240x240 to 120x120. This saving

in processing time can be used to track additional controllers or allow more CPU time for the

user application.

Using dynamic ROI sizes (as is implemented in the PS Move API Tracker) will help gain

both the benefits of big ROI sizes when required, as well as not having an impact on performance

when the controllers are far away.

5.6 Sphere Detection in Motion Blur Situations

With the PS Eye camera, we experienced visual tracking problems caused by motion blur with

green colors (figure 5.9). While other colors such as magenta (red and blue channels at full

intensity) were tracked without problems even in situations with fast movements, green does not

work so well with this camera. For this reason, green is to be avoided with the current hue-based

tracking algorithm when using the PS Eye camera.

Eliminating Motion Blur Errors

Improvements to the tracking algorithm could improve the situation. As the motion blur usually

happens while the controller is moved quickly, and this only happens for short amounts of time,

using the One Euro Filter [4] for the radius values could mitigate the tracking errors.

86

Figure 5.9: Motion blur from the PS Eye camera: Even in low exposure mode, green (left)

produces motion blur causing wrong size detection, while magenta (right) can be tracked well.

Also note the deforming of the green sphere, while the magenta sphere is still a circle.

Also, additional checks could be built into the algorithm to detect motion blur situations

such as the one in figure 5.9.

5.7 Example Applications

In this section, some of the example applications that have been developed for testing and

demonstrating the PS Move API libraries are presented.

Sensor Filter / Accelerometer Visualization

• Input data: Accelerometer

• Used modules: Core, Calibration

• Dependencies: Qt 4

• Usage scenario: Testing calibration, filter response

The sensor filter application (figure 5.10) uses one motion controller connected via Blue-

tooth, and reads the calibrated accelerometer values from it. The accelometer readings are dis-

played visually, and color-coded for each axis.

This example is a very barebones application, but helps explaining the functions of an ac-

celerometer in a visual way. It also shows how to integrate the PS Move API in a C++ Qt

application without the need for the Qt bindings.

87

Figure 5.11: Paint Application

To test the orientation filter and show the obtained rotation values, the 3D Orientation Vi-

sualizer (figure 5.12) can be used. It displays the current orientation in a 3D environment, and

optionally shows a simple 3D model of a controllers that reacts to button and trigger events.

Advanced features of this application include the option to let the OpenGL camera fly around

the world origin and to use the orientation information to control the camera viewing direction.

X11 Mouse Emulator

• Input data: Gyroscope and Buttons

• Used modules: Core, Calibration

• Dependencies: xdo

• Usage scenario: Mouse / input device replacement

The X11 Mouse Emulator uses the gyroscope of a single motion controller as well as the

buttons on the controller to emulate the mouse on Linux and Mac OS X systems. The source

code is kept as generic as possible, so the buttons can be re-configured to emulate keyboard

presses or mouse buttons (or a combination thereof).

89

Figure 5.12: 3D Orientation Visualizer Application

Interactive Whiteboard

• Input data: Vision Position and Buttons

• Used modules: Core, Tracker

• Dependencies: Qt 4

• Usage scenario: Low-cost interactive whiteboard solution

Another interesting use of the vision module is to map camera image coordinates to screen

coordinates (with the camera pointed towards the screen). A 4-point calibration (each corner of

the screen) has to be done before the application can be used. After the setup, the user can draw

on the screen as if it was a real interactive whiteboard.

An example photo of the application in use is shown in figure 5.13.

Multi-Touch Rotate/Zoom Example

• Input data: Vision Position and Buttons

• Used modules: Core, Tracker

• Dependencies: Qt 4

90

Figure 5.14: 3D Paint Sensor Fusion Application

Sensor Fusion: Augmented 3D Particles

• Input data: Vision Position, Orientation (Accelerometer, Gyroscope and Magnetometer)

and Buttons

• Used modules: Core, Tracker, Fusion

• Dependencies: OpenGL, GLUT, SDL

• Usage scenario: Augmented reality application, sensor fusion

Building on top of the 3D Paint Sensor Fusion example, this application implements physical

particles that can be emitted from and attracted by a (possibly different) controller (depending

on which button is pressed). Figure 5.15 shows an example of this in action - the controller on

the left attracts particles, while the controller on the right emits new particles.

5.8 Integration with Other Frameworks

While the PS Move API itself provides a very easy way to interface with existing code, some

frameworks and protocols exist that are used by existing applications for augmented reality (AR)

or virtual reality (VR) use cases. Interfacing with these frameworks allows users to use the PS

Move API without having to write special integration code or linking the application directly

with the library.

92

Figure 5.15: 3D Particles Sensor Fusion Application

TUIO Input Bridge

TUIO [17] is a simple protocol initially used for multi-touch interfaces. The “Interactive White-

board” application described in section 5.7 already works similar to a multi-touch surface, but

instead of detecting finger presses directly using one of the common multi-touch-table technolo-

gies, the PS Eye camera is used to create a mapping from the camera frame to the surface, and

the sphere on the PS Move Motion Controller is used as “cursor”.

The TUIO Input Bridge is available as examples/c/tuio_server.cpp in the PS Move API

source distribution, and depends on the TUIO reference implementation in external/TUIO_CPP/,

which has to be built as static library.

Once built and started, the TUIO Input Bridge will enumerate all PS Move Motion Con-

trollers available to the library, and try to calibrate them using the tracker. By default, the

application is configured so that TUIO touch points are only sent when the T (trigger) button is

pressed on the controller.

As the generic TUIO “2Dcur” profile doesn’t allow for button events, the TUIO Input Bridge

also contains support for a simple line-based TCP protocol that can be used to send additional

button events and information about tracking (when a controller’s tracking position gets lost,

etc..) and the 3D position (distance from the camera) - in this case, the developers using the

library will still have to add support for these additional events, but can reuse existing support

for the TUIO protocol.

93

OpenTracker Module

OpenTracker [27] is an open source framework for integrating different input sources used for

tracking the position, orientation and button states of input controllers into a single library. Input

modules provide additional data sources that can be configured in an XML file. Output modules

provide sinks into which data from input modules can be written. Between input and output

modules, OpenTracker can convert and modify the data to make input data suitable for a given

application without having to modify either the input or output module.

As the PS Move API library provides access to the Motion Controller’s state, and the PS

Move Tracker library can determine the 3D position of one or more Move controllers in space,

it makes sense to add support for the PS Move Controller to OpenTracker. To this end, a patch

for OpenTracker has been written that adds support for using the PS Move as an input device.

The module and the patch, including an example OpenTracker XML configuration can be found

in the directory bindings/opentracker/ in the PS Move API source distribution.

PSMoveModule

The PS Move Module (PSMoveModule.cxx and PSMoveModule.h) works as a central point

for connecting to PS Move Motion Controllers. It will create new instances of PSMoveSource

(see below) and it will also manage the single instance of the PS Move tracker module, as only

one tracker must be used even in the case of multiple controllers. A controller is obtained by

calling PSMoveModule::createNode() and specifying the controller ID as zero-based index in

the attributes. The other important function in this module is PSMoveModule::pushEvent()

which will update the camera image and tracking information for each controller, and then up-

date the state of every single controller (buttons / inertial sensors) by passing the request to

PSMoveSource::getEvent().

PSMoveSource

The PS Move Source (PSMoveSource.cxx and PSMoveModule.h) represents the event source

of a single controller. It gets instantiated by the PSMoveModule (see above) and gets a reference

to the PS Move Tracker instance passed in its constructor. The most important function in this

class is PSMoveSource::getEvent(), which carries out the following tasks:

1. Update the LEDs of the controller to keep it lit

2. Read the latest input reports from the controller using psmove_poll()

3. Save the trigger and button states of the controller in the event object

4. Get the 3D position from the tracker

5. Save the 3D position in the event object

6. Get the orientation (3D rotation) as quaternion from the library

7. Save the orientation in the event object

94

The PS Move Source explicitly doesn’t update the camera image or per-controller tracking,

as this is taken care of centrally in the PS Move Module.

Changes required in OpenTracker

The necessary changes to OpenTracker (as shipped in the VRUE2011 package) are available

as source-code patch in the PS Move API source distribution as bindings/opentracker/open-

tracker_vrue2011.patch.

• CMakeLists.txt - An option “OT_USE_PSMOVE” has to be added so that users can

enable and/or disable the PS Move feature.

• src/misc/OpenTracker.cxx - The PSMoveModule has to be registered to the OpenTracker

core, so that it can be found at runtime, using “OT_REGISTER_MODULE()”.

• opentracker/src/CMakeLists.txt - Include directories and the linking information has to

be set, so that header files and the shared library of PS Move API can be found by the

compiler and linker. We are using the pkgconfig facility here, and assume a system-wide

installation of the PS Move API. Also, the “USE_PSMOVE” define must be set here, so

that the PS Move-specific code is compiled.

Example OpenTracker configuration

A very simple configuration that connects to a single PS Move Motion controller and prints the

tracking information on the console looks like this:

1 <?xml v e r s i o n = " 1 . 0 " e n c o d i n g ="UTF−8"?>

2 <!DOCTYPE OpenTracker SYSTEM " o p e n t r a c k e r . d t d ">

3 <OpenTracker >

4 < c o n f i g u r a t i o n >

5 < Conso l e Conf ig h e a d e r l i n e ="My Outpu t " i n t e r v a l ="1" / >

6 <PSMoveConfig / >

7 </ c o n f i g u r a t i o n >

8

9 < Conso l eS ink comment ="PSMove C o n t r o l l e r " a c t i v e =" on">

10 <PSMoveSource c o n t r o l l e r ="0" / >

11 </ Conso leSink >

12 </ OpenTracker >

To read from more than one controller, add another PSMoveSource element to the XML

file, and supply a different (zero-based) controller index in the “controller” XML attribute.

95

5.9 Performance and Limits Summary

This section gives an overview of the performance measured in the previous sections, as well as

built-in limits of the current implementation. The hardware and software setups used for these

measurements are described in section 5.1.

• Vision Tracker Frame Rate (tracking 1 controller)

– Linux (PS Eye): 50 FPS

– Mac OS X (iSight): 68 FPS

• End-to-End System Latency (LED setting to initial tracking)

– Linux (PS Eye): 68 ms (± 3 ms)

– Mac OS X (iSight): 130 ms (± 52 ms)

• Maximum HID Update Rate (inertial sensors, trigger and buttons)

– Linux: 60 updates/second

– Mac OS X: 87 updates/second

– Hardware Limit: ~87 updates/second

• Tracker Module Controller Limit: 5 controllers

• Per-Host Bluetooth Controller Limit: up to 9 (depending on adapter)

The following limits have been tested in working conditions, depending on the environment

and hardware used it might be possible to use even more controllers simultaneously:

• Maximum Simultaneous Controllers in a Single Room: 21 (3 laptops, Move Daemon)

• Maximum Bluetooth Distance: up to 15 m (depending on adapter and environment)

96

CHAPTER 6
Summary and Future Work

This chapter gives a quick overview of the implemented features, as well as a list of open issues

that have not been resolved. In closing, an overview of future work is given, which extends upon

the scope of this thesis.

6.1 Implemented Features

This section gives an overview of the features that are implemented in the PS Move API 3.0

release:

PS Move Core Library

The core library deals with controller communication and reading and writing data from/to the

controller. The LEDs and inertial sensors are handled by the core library, including further

processing of the data.

• USB pairing - Pairing works reliably on Mac OS X and Linux, the Windows implemen-

tation works unreliably due to Windows issues

• LED setting - Setting the controller LEDs works reliably and fast on Mac OS X an Win-

dows when paired, and also works reliably on Linux using the workarounds (multithread-

ing) implemented for Linux

• Calibration reading - Reading the calibration data and storing it on disk is implemented

as part of the USB pairing process

• Button and sensor reading - Buttons and sensors (raw and calibrated) can be read by the

library and reported to the user app

• Orientation tracking - The orientation of the controller can be obtained as quaternion

describing rotation in 3D space

97

PS Move Tracker Library

The tracker library deals with OpenCV integration, vision tracking of the lit sphere in the camera

frame, including further processing of the data.

• PS Eye support - PS Eye support works natively in Linux, and on Windows with the

CLEye driver. On Mac OS X, PS Eye support is not yet available due to missing 64-bit

camera drivers.

• Exposure setting - The exposure of the PS Eye can be reliably controlled on Linux and

Windows. On Mac OS X, a workaround for the built-in iSight camera exists.

• Multi-controller tracking - This has been tested with up to 5 controllers with a 1080i HD

camera. In general, the PS Eye camera can also track up to 5 controllers without problems,

the limitation being the number of different colors that can be detected in a reliable way.

• Camera image mirroring - The camera image can be mirrored. All tracking data will be

mirrored accordingly (including the part in the sensor fusion algorithm), which is useful

for situations where the camera has the same direction as the screen.

• HD camera support - The library works with any camera resolution, and has been tested

with 1080i and 1080p input. For 1080i input, the library includes runtime support for

deinterlacing the image using line doubling.

• Distance calibration/reporting - The distance of the sphere from the camera can be cal-

culated using the radius. Calibration can be carried out, upon which the distance calibra-

tion is based. For the PS Eye, the distance calibration is built in.

• Sensor fusion - The orientation (from the core library) and position (from the tracker

library) can be combined to render 3D data on top of the controller in the camera frame.

Language and Framework Bindings

The PS Move API can be used from different target languages. The library itself is implemented

in C, and the default language is also C. Bindings and examples for more languages exist for

both the core library and the tracker library.

• Python - A CPython extension module. Tested with Python 2.7.

• Java - A JNI module and .jar library. Tested with Java SE 1.6.0.

• Processing - Based on the Java bindings. Tested with Processing 1.5.1 in Mac OS X 10.8.

• C# - A C# library using P/Invoke. Tested with Mono 2.10.8.1 on Ubuntu 12.10.

• OpenTracker - An input module for the OpenTracker Framework.

• TUIO - A server broadcasting TUIO 1.1 2Dcur messages.

98

6.2 Discussion of Open Issues

This section gives an overview of issues that have not been solved, and cannot be solved with-

out modifications in the target platforms, operating system kernels, middleware or dependency

libraries. Where applicable, ideas for solutions to the problems are given.

HID Write Performance on Linux

Compared to Mac OS X and Linux, the Bluetooth HID stack on Linux has some delay1 when

writing LED and rumble information out to the controller. In practice, this means that the pro-

gram (and consequently tracking) would be stopped for a few milliseconds every time the LEDs

are set.

We currently work around this problem by making intelligent decisions about when to send

LED updates and when to avoid them (e.g. if the LED color is not changed, it does not make

sense to send an update to the controller - the controller will keep the LED on for a few seconds

after the last update). Similarly, a rate-limiting feature has been implemented so that excessive

updates that would not be visible to the user are not sent to the controller.

In addition to making sure not to send unnecessary updates, the Linux implementation of

PS Move API runs the LED setting in a separate thread, thereby avoiding blocking the main

application.

Ideally, the Linux Bluetooth stack would be fixed, so that the updates are sent as quickly as

on Mac OS X and Windows. The performance tests have been carried out on the same hardware

on Mac OS X and Linux, so the problem is software-related and has nothing to do with the

hardware used.

Motion Blur with Different Channels when Using the PS Eye Camera

In the tests, the green color channel of the PS Eye camera image caused more motion blur for

fast movements than the red and blue channels (see section 5.6). In practice, this means that a

green-only controller color is to be avoided when using the PS Eye camera, as it will lead to

worse tracking results.

This issue is mostly a hardware limitation of the PS Eye camera sensor, and can probably

not be solved in software easily. When using higher-quality cameras, this problem usually does

not appear at all, so it can also be solved by using different hardware.

Unused / Unknown Fields in the Calibration Data

We currently do not parse all available information from the calibration blob that is retrieved

from the controller via USB during the pairing process. The reason for this is that the format

and contents of the calibration data is not documented, and the documentation on the MoveOnPC

wiki pages is not complete.

Being able to utilize more or all of the calibration data might improve the sensor-based

tracking performance, because more calibration data can be used to interpret the raw sensor

1http://moveonpc.blogspot.com/2012/06/multi-threaded-led-writing.html, retrieved 2012-12-08

99

readings. Still, with the calibration data that we currently use, the accelerometer and gyroscope

calibration already works quite well for the common use cases.

Fixing this issue would require some analysis of existing calibration data from multiple PS

Move Motion Controllers, or documentation of the format from the hardware vendor (Sony) and

usage of the additional calibration data in the library.

Bluetooth Pairing on Windows

Pairing a PS Move Motion Controller to a Windows (7/8) computer does not work reliably. There

are several guides online on how to do the pairing with some tricks (pressing the PS button at

the right times, timing the clicks in the UI “just right”, etc...), but in general it’s a trial-and-error

procedure, and it might not work at all in some cases.

Research into existing solutions (e.g. for the Sixaxis controller, which has similar connection

problems via Bluetooth) suggests that it is not possible to gain full control over the Windows

Bluetooth stack without writing a complete replacement driver (which is out of scope for this

project, and might bring other problems - e.g. when users want to use Bluetooth audio devices

together with the Motion Controller).

This problem might not be solvable without support from Microsoft. One possibility for

making it a bit easier to do the pairing without help from Microsoft would be to analyze the

changes in the Windows Registry before and after a controller has been successfully paired.

Such data already exists, and there has been a discussion2 on the mailing list in June 2012

about the registry keys that get updated. Further work on this might reveal a solution in which

the Windows registry is updated manually, making pairing work reliably. Similar “hacks” are

already employed for Mac OS X (10.7 and later) and Linux, where the controller’s Bluetooth

address is injected into the system’s Bluetooth stack configuration during pairing.

Exposure Setting on Mac OS X

As described in section 3.7, the blinking calibration on Mac OS X does not work as cleanly

as on other systems, because the exposure cannot be set manually. The only possible way to

avoid having continous auto-exposure on Mac OS X is to “lock” the exposure, which means that

exposure adjustments happen only once when the camera device is opened.

This in turn means that the user has to move the glowing sphere in front of the iSight camera

whenever an application starts in order for the exposure to be at a very low level suitable for

tracking a brightly-lit controller.

Fixing this issue would require interfacing with the camera on a low level (again, the OS

X-provided libraries do not provide this level of control), or interfacing with the PS Eye camera

in userspace, and doing the frame grabbing manually.

Alternatively, Apple could provide advanced APIs in a future OS X update that allows setting

the exposure of the iSight camera (as the hardware seems to be capable of setting the exposure,

because the auto-exposure is something that is very likely done in software).

2http://lists.ims.tuwien.ac.at/pipermail/psmove/2012-June/000029.html, retrieved 2012-12-08

100

6.3 Future Work

This section presents some ideas which have not been fully implemented as part of this thesis,

and which could be implemented in a future follow-up project.

Tracking with Low-FPS Cameras

The library has been designed to work together with the PS Eye camera, as it provides a known-

good hardware platform for which the parameters of the lens can be known and the exposure

settings are adjustable from Linux and Windows.

In general, however, the library does not limit input to the PS Eye. All cameras supported

by OpenCV can be used for vision tracking, and the library has also been used in situations

where frame grabbing was done in user code, so any camera that provides an RGB framebuffer

(possibly converted from the camera’s native colorspace) to the library could be used by the PS

Move API.

Some consumer cameras do have a very low FPS (frames per second) count, so tracking

fast movements is harder and becomes more error-prone. Another issue with normal consumer

cameras is that they usually exhibit large amounts of motion blur, even with relatively slow

movements, so tracking quality is not very good, and tracking losses can occur.

To fix these issues, the region of interest size (see section 3.5) can be increased, so that the

frame-after-frame tracking works for greater movement distances. Also, the intertial sensors

of the controller could be used to predict the new position of the controller, so that for fast

movements, only the inertial sensor data is used instead of relying on the (blurry) camera image

data.

Methods similar to the ones proposed in [18] could be used to mitigate the effects of motion

blur for these low-FPS consumer cameras, too.

Color Selection

Right now, the color selection for each controller in the tracker module is static. The color

selection could be dynamic by analyzing the camera picture (at the beginning only or even

during tracking) for existing colors, and picking colors that are not seen in the camera frame. As

the environment might change (e.g. a person with colored clothes walks into the camera frame),

this might need automatic switching of the sphere color during tracking.

Fixing these issues should make the blinking calibration more robust and should allow users

to use the PS Move API with more cameras and in more difficult environments without having

to do manual configuration steps.

Multi-Threaded Controller Tracking

As described in section 5.2, tracking performance could be improved by moving per-controller

tracking into separate threads. This makes sense on multi-core CPUs. In addition to making

better use of the available CPU resources, this would reduce the end-to-end system latency

when tracking multiple controllers, as tracking results will be available sooner.

101

Improved Sensor Fusion

Right now, sensor fusion is done by combining the orientation of the controller (3D rotation,

from inertial sensors) and the position of the controller (3D position, from computer vision). One

idea how this could be improved is to use the inertial sensors to refine the position information

of the controller. For example, when the inertial sensors register no movement, and the vision

tracking “sees” the controller moving, this can be an indication that the vision part is probably

not tracking the right object.

Dead Reckoning using Inertial Sensors

When visual tracking is lost, the inertial sensor data (especially the accelerometer data) can be

used for short amounts of time for dead reckoning of the controller’s position.

Movement Prediction using Inertial Sensors

In cases where the camera frame comes in with a certain delay (introduced by grabber cards and

external cameras) or for fast motion movement, the inertial sensor data from the accelerometer

can be used to predict future movement of the controller in the camera image, and partially

mitigate the delay introduced by the capture pipeline.

Custom Hardware

Right now, the PS Move API only works with off-the-shelf hardware from Sony. Building

custom hardware could give us more control over the communication protocol, and would avoid

the pairing issues on Windows. A disadvantage would be that the hardware must be designed

and produced, and that large parts of the software might need to be rewritten.

Performance Improvements

Performance is already good on most devices, but especially on mobile devices like phones, the

tracking performance could be improved. A different CV library like FastCV could bring some

performance improvements, but might require rewriting of parts of the tracker codebase.

For the Processing bindings, the way we convert the captured camera image into a PImage

for display in processing is not very efficient. While it works fine for 640x480 images, higher

resolutions will become a bottleneck, especially on older hardware. A better solution using

shared memory or overlays could improve the situation here.

Connection Monitoring for the Move Daemon on Mac OS X

The Move Daemon “moved” currently only monitors connect/disconnect events on Linux. On

Mac OS X, newly-connected controllers are not automatically detected. In situations where

long-running processes run using the PS Move API, it might be useful to allow disconnects and

reconnects during application runtime. The OS X implementation could be improved in a way

102

that disconnected devices and newly-connected devices are connected and picked up by moved

automatically.

Camera Calibration and Improved OpenGL Projection

For augmented reality using the sensor fusion parts of the library, the OpenGL projection matrix

is just an approximation of the real projection of the camera. This could be improved by using

a more realistic model of projecting the 3D scene on top of the camera image. This would

probably involve re-using data from the camera calibration step and modifying the sensor fusion

algorithm accordingly. Having a better projection matrix would also result in better results for

the 3D rendering of objects on top of the camera image.

Unity3D Integration using ARTiFICe

ARTiFICe [24] is a framework for quickly creating virtual and augmented reality applications

using Unity3D and various types of input devices. ARTiFICe itself supports OpenTracker as

input framework, so the OpenTracker integration of the PS Move API can be used to integrate

PS Move Motion Controller input with Unity3D. Using the C# bindings of the PS Move API

in addition to (or instead of) the OpenTracker framework could make it easier for developers to

integrate PS Move input into Unity3D applications.

103

6.4 Resources on the Internet

This section lists important web pages as a starting point for further reading.

PS Move API

The PS Move API is the open source implementation of the C library, language bindings and

example applications described in this thesis.

• http://thp.io/2010/psmove/

• http://github.com/thp/psmoveapi/

MoveOnPC

The MoveOnPC project is the umbrella project for PS Move on personal and mobile computers,

including the Git mirror for the library, file downloads, Wiki and the mailing list.

• http://code.google.com/p/moveonpc/

• https://www.ims.tuwien.ac.at/projects/moveonpc

PS Move Mailing List

The PS Move Mailing List should be used for discussing the PS Move API and MoveOnPC

projects (thesis feedback should be sent to the author, see below).

• https://lists.ims.tuwien.ac.at/mailman/listinfo/psmove

• http://lists.ims.tuwien.ac.at/pipermail/psmove/

Thesis Errata and Feedback

The webpage contains up to date information and errata. Feedback and questions can be sent via

e-mail to the address listed on the about page. For generic (not thesis-related) questions about

the PS Move or the PS Move API, please use the PS Move Mailing List.

• http://thp.io/2012/thesis/

• http://thp.io/about

104

http://thp.io/2010/psmove/
http://github.com/thp/psmoveapi/
http://code.google.com/p/moveonpc/
https://www.ims.tuwien.ac.at/projects/moveonpc
https://lists.ims.tuwien.ac.at/mailman/listinfo/psmove
http://lists.ims.tuwien.ac.at/pipermail/psmove/
http://thp.io/2012/thesis/
http://thp.io/about

APPENDIX A
Library API Documentation

This section gives an overview of the API functions, declared types and enumerations in the

PS Move API library. This section is intended to be a quick reference for looking up a certain

function, and not a detailed explanation of the API functions. Details such as parameter specifi-

cations and meanings of return values should be obtained from the header files or the Doxygen

documentation (see below).

Generating the API Documentation from Source

The API documentation can be generated using the Doxygen1 utility. Generating the docu-

mentation from source has the advantage of always having the latest up-to-date documentation

corresponding to the source release - the documentation is this chapter was valid at the time it

has been generated from the source code in the PS Move API Git repository (2012-12-06).

On Debian-based systems such as Ubuntu, Doxygen can be installed with:

1 sudo ap t−g e t i n s t a l l doxygen

After installing Doxygen and checking out the PS Move API source code, the documentation

can be built by issuing the following command in the top-level source directory:

1 doxygen

The resulting documentation will be built in the “html/” subdirectory, the starting page of

the documentation can be found in “html/index.html”.

Structure of the Library

The public API of the library is split into several header files, which are found in “include/” in

the PS Move API source distribution. Depending on which features of the PS Move API you

1http://www.doxygen.org/, retrieved 2012-12-06

105

use, you might not need the Tracker or Fusion modules. The “psmove.h” file is always needed.

Some functions of the API are exposed both as API functions as well as command-line utilities,

such as the “psmovepair” utility (which wraps the psmove_pair() API function).

To build your application, you can link against the shared or static library versions of the

PS Move API. For the Core module, the shared library is called “libpsmoveapi”, and the static

library is called “libpsmoveapi_static”. The Tracker and Fusion modules are both included in

the tracker library. The shared tracker library is called “libpsmoveapi_tracker”, and the static

tracker library is called “libpsmoveapi_tracker_static”.

A.1 Core Module (psmove.h)

The Core Module handles connections to the PS Move Motion Controller, as well as pairing and

reading of button and sensor values.

Types

• PSMove: Handle to a PS Move Controller.

Enumerations

PSMove_Connection_Type

Connection type for controllers.

• Conn_Bluetooth: The controller is connected via Bluetooth.

• Conn_USB: The controller is connected via USB.

• Conn_Unknown: Unknown connection type / other error.

PSMove_Button

Button flags.

• Btn_TRIANGLE: Green triangle.

• Btn_CIRCLE: Red circle.

• Btn_CROSS: Blue cross.

• Btn_SQUARE: Pink square.

• Btn_SELECT: Select button, left side.

• Btn_START: Start button, right side.

• Btn_MOVE: Move button, big front button.

106

• Btn_T: Trigger, on the back.

• Btn_PS: PS button, front center.

PSMove_Frame

Frame of an input report.

• Frame_FirstHalf: The older frame.

• Frame_SecondHalf: The most recent frame.

PSMove_Battery_Level

Battery charge level.

• Batt_MIN: Battery is almost empty (< 20%)

• Batt_20Percent: Battery has at least 20% remaining.

• Batt_40Percent: Battery has at least 40% remaining.

• Batt_60Percent: Battery has at least 60% remaining.

• Batt_80Percent: Battery has at least 80% remaining.

• Batt_MAX: Battery is fully charged (not on charger)

• Batt_CHARGING: Battery is currently being charged.

• Batt_CHARGING_DONE: Battery is fully charged (on charger)

PSMove_Update_Result

LED update result, returned by psmove_update_leds()

• Update_Failed: Could not update LEDs.

• Update_Success: LEDs successfully updated.

• Update_Ignored: LEDs don’t need updating, see psmove_set_rate_limiting()

PSMove_Bool

Boolean type.

• PSMove_False: False, Failure, Disabled (depending on context)

• PSMove_True: True, Success, Enabled (depending on context)

107

PSMove_RemoteConfig

Remote configuration options, for psmove_set_remote_config()

• PSMove_LocalAndRemote: Use both local (hidapi) and remote (moved) devices.

• PSMove_OnlyLocal: Use only local (hidapi) devices, ignore remote devices.

• PSMove_OnlyRemote: Use only remote (moved) devices, ignore local devices.

Functions

psmove_set_remote_config

Enable or disable the usage of local or remote devices.

1 vo id

2 p s m o v e _ s e t _ r e m o t e _ c o n f i g (enum PSMove_RemoteConfig c o n f i g) ;

psmove_count_connected

Get the number of available controllers.

1 i n t

2 psmove_coun t_connec t ed () ;

psmove_connect

Connect to the default PS Move controller.

1 PSMove ∗

2 psmove_connec t () ;

psmove_connect_by_id

Connect to a specific PS Move controller.

1 PSMove ∗

2 psmove_connec t_by_ id (i n t i d) ;

psmove_connection_type

Get the connection type of a PS Move controller.

1 enum PSMove_Connection_Type

2 p s m o v e _ c o n n e c t i o n _ t y p e (PSMove ∗move) ;

108

psmove_is_remote

Check if the controller is remote (moved) or local.

1 enum PSMove_Bool

2 psmove_ i s_ remote (PSMove ∗move) ;

psmove_get_serial

Get the serial number (Bluetooth MAC address) of a controller.

1 c h a r ∗

2 p s m o v e _ g e t _ s e r i a l (PSMove ∗move) ;

psmove_pair

Pair a controller connected via USB with the computer.

1 enum PSMove_Bool

2 psmove_pa i r (PSMove ∗move) ;

psmove_pair_custom

Pair a controller connected via USB to a specific address.

1 enum PSMove_Bool

2 psmove_pa i r_cus tom (PSMove ∗move , c o n s t c h a r ∗ b t a d d r _ s t r i n g) ;

psmove_set_rate_limiting

Enable or disable LED update rate limiting.

1 vo id

2 p s m o v e _ s e t _ r a t e _ l i m i t i n g (PSMove ∗move , enum PSMove_Bool e n a b l e d) ;

psmove_set_leds

Set the RGB LEDs on the PS Move controller.

1 vo id

2 p s m o v e _ s e t _ l e d s (PSMove ∗move , u n s i g n e d c h a r r , u n s i g n e d c h a r g , u n s i g n e d c h a r

b) ;

109

psmove_set_rumble

Set the rumble intensity of the PS Move controller.

1 vo id

2 psmove_se t_ rumble (PSMove ∗move , u n s i g n e d c h a r rumble) ;

psmove_update_leds

Send LED and rumble values to the controller.

1 enum PSMove_Update_Resul t

2 p s m o v e _ u p d a t e _ l e d s (PSMove ∗move) ;

psmove_poll

Read new sensor/button data from the controller.

1 i n t

2 psmove_po l l (PSMove ∗move) ;

psmove_get_buttons

Get the current button states from the controller.

1 u n s i g n e d i n t

2 p s m o v e _ g e t _ b u t t o n s (PSMove ∗move) ;

psmove_get_button_events

Get new button events since the last call to this fuction.

1 vo id

2 p s m o v e _ g e t _ b u t t o n _ e v e n t s (PSMove ∗move , u n s i g n e d i n t ∗ p r e s s e d , u n s i g n e d i n t ∗

r e l e a s e d) ;

psmove_get_battery

Get the battery charge level of the controller.

1 enum PSMove_Bat te ry_Level

2 p s m o v e _ g e t _ b a t t e r y (PSMove ∗move) ;

110

psmove_get_temperature

Get the current raw temperature reading of the controller.

1 i n t

2 p s m o v e _ g e t _ t e m p e r a t u r e (PSMove ∗move) ;

psmove_get_trigger

Get the value of the PS Move analog trigger.

1 u n s i g n e d c h a r

2 p s m o v e _ g e t _ t r i g g e r (PSMove ∗move) ;

psmove_get_accelerometer

Get the raw accelerometer reading from the PS Move.

1 vo id

2 p s m o v e _ g e t _ a c c e l e r o m e t e r (PSMove ∗move , i n t ∗ax , i n t ∗ay , i n t ∗ az) ;

psmove_get_gyroscope

Get the raw gyroscope reading from the PS Move.

1 vo id

2 psmove_ge t_gyroscope (PSMove ∗move , i n t ∗gx , i n t ∗gy , i n t ∗gz) ;

psmove_get_magnetometer

Get the raw magnetometer reading from the PS Move.

1 vo id

2 psmove_ge t_magne tomete r (PSMove ∗move , i n t ∗mx , i n t ∗my , i n t ∗mz) ;

psmove_get_accelerometer_frame

Get the calibrated accelerometer values (in g) from the controller.

1 vo id

2 p s m o v e _ g e t _ a c c e l e r o m e t e r _ f r a m e (PSMove ∗move , enum PSMove_Frame frame , f l o a t ∗

ax , f l o a t ∗ay , f l o a t ∗ az) ;

111

psmove_get_gyroscope_frame

Get the calibrated gyroscope values (in rad/s) from the controller.

1 vo id

2 psmove_ge t_gy roscope_ f r ame (PSMove ∗move , enum PSMove_Frame frame , f l o a t ∗gx ,

f l o a t ∗gy , f l o a t ∗gz) ;

psmove_get_magnetometer_vector

Get the normalized magnetometer vector from the controller.

1 vo id

2 p s m o v e _ g e t _ m a g n e t o m e t e r _ v e c t o r (PSMove ∗move , f l o a t ∗mx , f l o a t ∗my , f l o a t ∗mz)

;

psmove_has_calibration

Check if calibration is available on this controller.

1 enum PSMove_Bool

2 p s m o v e _ h a s _ c a l i b r a t i o n (PSMove ∗move) ;

psmove_dump_calibration

Dump the calibration information to stdout.

1 vo id

2 p s m o v e _ d u m p _ c a l i b r a t i o n (PSMove ∗move) ;

psmove_enable_orientation

Enable or disable orientation tracking.

1 vo id

2 p s m o v e _ e n a b l e _ o r i e n t a t i o n (PSMove ∗move , enum PSMove_Bool e n a b l e d) ;

psmove_has_orientation

Check if orientation tracking is available for this controller.

1 enum PSMove_Bool

2 p s m o v e _ h a s _ o r i e n t a t i o n (PSMove ∗move) ;

112

psmove_get_orientation

Get the current orientation as quaternion.

1 vo id

2 p s m o v e _ g e t _ o r i e n t a t i o n (PSMove ∗move , f l o a t ∗w, f l o a t ∗x , f l o a t ∗y , f l o a t ∗z) ;

psmove_reset_orientation

Reset the current orientation quaternion.

1 vo id

2 p s m o v e _ r e s e t _ o r i e n t a t i o n (PSMove ∗move) ;

psmove_reset_magnetometer_calibration

Reset the magnetometer calibration state.

1 vo id

2 p s m o v e _ r e s e t _ m a g n e t o m e t e r _ c a l i b r a t i o n (PSMove ∗move) ;

psmove_save_magnetometer_calibration

Save the magnetometer calibration values.

1 vo id

2 p s m o v e _ s a v e _ m a g n e t o m e t e r _ c a l i b r a t i o n (PSMove ∗move) ;

psmove_get_magnetometer_calibration_range

Return the raw magnetometer calibration range.

1 i n t

2 p s m o v e _ g e t _ m a g n e t o m e t e r _ c a l i b r a t i o n _ r a n g e (PSMove ∗move) ;

psmove_disconnect

Disconnect from the PS Move and release resources.

1 vo id

2 p s m o v e _ d i s c o n n e c t (PSMove ∗move) ;

113

psmove_reinit

Reinitialize the library.

1 vo id

2 p s m o v e _ r e i n i t () ;

psmove_util_get_ticks

Get milliseconds since first library use.

1 l ong

2 p s m o v e _ u t i l _ g e t _ t i c k s () ;

psmove_util_get_data_dir

Get local save directory for settings.

1 c o n s t c h a r ∗

2 p s m o v e _ u t i l _ g e t _ d a t a _ d i r () ;

psmove_util_get_file_path

Get a filename path in the local save directory.

1 c h a r ∗

2 p s m o v e _ u t i l _ g e t _ f i l e _ p a t h (c o n s t c h a r ∗ f i l e n a m e) ;

psmove_util_get_env_int

Get an integer from an environment variable.

1 i n t

2 p s m o v e _ u t i l _ g e t _ e n v _ i n t (c o n s t c h a r ∗name) ;

psmove_util_get_env_string

Get a string from an environment variable.

1 c h a r ∗

2 p s m o v e _ u t i l _ g e t _ e n v _ s t r i n g (c o n s t c h a r ∗name) ;

114

A.2 Tracker Module (psmove_tracker.h)

The Tracker Module interfaces with the OpenCV library and the Core Module to provide vision-

based tracking of the controller in the camera image.

Types

• PSMoveTracker: Handle to a Tracker object.

Enumerations

PSMoveTracker_Status

Status of the tracker.

• Tracker_NOT_CALIBRATED: Controller not registered with tracker.

• Tracker_CALIBRATION_ERROR: Calibration failed (check lighting, visibility)

• Tracker_CALIBRATED: Color calibration successful, not currently tracking.

• Tracker_TRACKING: Calibrated and successfully tracked in the camera.

PSMoveTracker_Exposure

Exposure modes.

• Exposure_LOW: Very low exposure: Good tracking, no environment visible.

• Exposure_MEDIUM: Middle ground: Good tracking, environment visibile.

• Exposure_HIGH: High exposure: Fair tracking, but good environment.

• Exposure_INVALID: Invalid exposure value (for returning failures)

Functions

psmove_tracker_new

Create a new PS Move Tracker instance and open the camera.

1 PSMoveTracker ∗

2 psmove_ t racke r_new () ;

psmove_tracker_new_with_camera

Create a new PS Move Tracker instance with a specific camera.

1 PSMoveTracker ∗

2 psmove_ t r acke r_new_wi th_camera (i n t camera) ;

115

psmove_tracker_set_auto_update_leds

Configure if the LEDs of a controller should be auto-updated.

1 vo id

2 p s m o v e _ t r a c k e r _ s e t _ a u t o _ u p d a t e _ l e d s (PSMoveTracker ∗ t r a c k e r , PSMove ∗move ,

enum PSMove_Bool a u t o _ u p d a t e _ l e d s) ;

psmove_tracker_get_auto_update_leds

Check if the LEDs of a controller are updated automatically.

1 enum PSMove_Bool

2 p s m o v e _ t r a c k e r _ g e t _ a u t o _ u p d a t e _ l e d s (PSMoveTracker ∗ t r a c k e r , PSMove ∗move) ;

psmove_tracker_set_dimming

Set the LED dimming value for all controller.

1 vo id

2 p s m o v e _ t r a c k e r _ s e t _ d i m m i n g (PSMoveTracker ∗ t r a c k e r , f l o a t dimming) ;

psmove_tracker_get_dimming

Get the LED dimming value for all controllers.

1 f l o a t

2 psmo ve _ t r a c ke r _ge t_d imm ing (PSMoveTracker ∗ t r a c k e r) ;

psmove_tracker_set_exposure

Set the desired camera exposure mode.

1 vo id

2 p s m o v e _ t r a c k e r _ s e t _ e x p o s u r e (PSMoveTracker ∗ t r a c k e r , enum

PSMoveTracker_Exposure e x p o s u r e) ;

psmove_tracker_get_exposure

Get the desired camera exposure mode.

1 enum PSMoveTracker_Exposure

2 p s m o v e _ t r a c k e r _ g e t _ e x p o s u r e (PSMoveTracker ∗ t r a c k e r) ;

116

psmove_tracker_enable_deinterlace

Enable or disable camera image deinterlacing (line doubling)

1 vo id

2 p s m o v e _ t r a c k e r _ e n a b l e _ d e i n t e r l a c e (PSMoveTracker ∗ t r a c k e r , enum PSMove_Bool

e n a b l e d) ;

psmove_tracker_set_mirror

Enable or disable horizontal camera image mirroring.

1 vo id

2 p s m o v e _ t r a c k e r _ s e t _ m i r r o r (PSMoveTracker ∗ t r a c k e r , enum PSMove_Bool e n a b l e d) ;

psmove_tracker_get_mirror

Query the current camera image mirroring state.

1 enum PSMove_Bool

2 p s m o v e _ t r a c k e r _ g e t _ m i r r o r (PSMoveTracker ∗ t r a c k e r) ;

psmove_tracker_enable

Enable tracking of a motion controller.

1 enum PSMoveTracke r_S ta tus

2 p s m o v e _ t r a c k e r _ e n a b l e (PSMoveTracker ∗ t r a c k e r , PSMove ∗move) ;

psmove_tracker_enable_with_color

Enable tracking with a custom sphere color.

1 enum PSMoveTracke r_S ta tus

2 p s m o v e _ t r a c k e r _ e n a b l e _ w i t h _ c o l o r (PSMoveTracker ∗ t r a c k e r , PSMove ∗move ,

u n s i g n e d c h a r r , u n s i g n e d c h a r g , u n s i g n e d c h a r b) ;

psmove_tracker_disable

Disable tracking of a motion controller.

1 vo id

2 p s m o v e _ t r a c k e r _ d i s a b l e (PSMoveTracker ∗ t r a c k e r , PSMove ∗move) ;

117

psmove_tracker_get_color

Get the desired sphere color of a motion controller.

1 i n t

2 p s m o v e _ t r a c k e r _ g e t _ c o l o r (PSMoveTracker ∗ t r a c k e r , PSMove ∗move , u n s i g n e d c h a r

∗ r , u n s i g n e d c h a r ∗g , u n s i g n e d c h a r ∗b) ;

psmove_tracker_get_camera_color

Get the sphere color of a controller in the camera image.

1 i n t

2 p s m o v e _ t r a c k e r _ g e t _ c a m e r a _ c o l o r (PSMoveTracker ∗ t r a c k e r , PSMove ∗move ,

u n s i g n e d c h a r ∗ r , u n s i g n e d c h a r ∗g , u n s i g n e d c h a r ∗b) ;

psmove_tracker_set_camera_color

Set the sphere color of a controller in the camera image.

1 i n t

2 p s m o v e _ t r a c k e r _ s e t _ c a m e r a _ c o l o r (PSMoveTracker ∗ t r a c k e r , PSMove ∗move ,

u n s i g n e d c h a r r , u n s i g n e d c h a r g , u n s i g n e d c h a r b) ;

psmove_tracker_get_status

Query the tracking status of a motion controller.

1 enum PSMoveTracke r_S ta tus

2 p s m o v e _ t r a c k e r _ g e t _ s t a t u s (PSMoveTracker ∗ t r a c k e r , PSMove ∗move) ;

psmove_tracker_update_image

Retrieve the next image from the camera.

1 vo id

2 p s m o v e _ t r a c k e r _ u p d a t e _ i m a g e (PSMoveTracker ∗ t r a c k e r) ;

psmove_tracker_update

Process incoming data and update tracking information.

1 i n t

2 p s m o v e _ t r a c k e r _ u p d a t e (PSMoveTracker ∗ t r a c k e r , PSMove ∗move) ;

118

psmove_tracker_annotate

Draw debugging information onto the current camera image.

1 vo id

2 p s m o v e _ t r a c k e r _ a n n o t a t e (PSMoveTracker ∗ t r a c k e r) ;

psmove_tracker_get_frame

Get the current camera image as backend-specific pointer.

1 vo id ∗

2 p s m o v e _ t r a c k e r _ g e t _ f r a m e (PSMoveTracker ∗ t r a c k e r) ;

psmove_tracker_get_image

Get the current camera image as 24-bit RGB data blob.

1 PSMoveTrackerRGBImage

2 p s m o v e _ t r a c k e r _ g e t _ i m a g e (PSMoveTracker ∗ t r a c k e r) ;

psmove_tracker_get_position

Get the current position and radius of a tracked controller.

1 i n t

2 p s m o v e _ t r a c k e r _ g e t _ p o s i t i o n (PSMoveTracker ∗ t r a c k e r , PSMove ∗move , f l o a t ∗x ,

f l o a t ∗y , f l o a t ∗ r a d i u s) ;

psmove_tracker_get_size

Get the camera image size for the tracker.

1 vo id

2 p s m o v e _ t r a c k e r _ g e t _ s i z e (PSMoveTracker ∗ t r a c k e r , i n t ∗width , i n t ∗ h e i g h t) ;

psmove_tracker_distance_from_radius

Calculate the physical distance (in cm) of the controller.

1 f l o a t

2 p s m o v e _ t r a c k e r _ d i s t a n c e _ f r o m _ r a d i u s (PSMoveTracker ∗ t r a c k e r , f l o a t r a d i u s) ;

119

psmove_tracker_set_distance_parameters

Set the parameters for the distance mapping function.

1 vo id

2 p s m o v e _ t r a c k e r _ s e t _ d i s t a n c e _ p a r a m e t e r s (PSMoveTracker ∗ t r a c k e r , f l o a t h e i g h t ,

f l o a t c e n t e r , f l o a t hwhm , f l o a t shape) ;

psmove_tracker_free

Destroy an existing tracker instance and free allocated resources.

1 vo id

2 p s m o v e _ t r a c k e r _ f r e e (PSMoveTracker ∗ t r a c k e r) ;

120

A.3 Sensor Fusion Module (psmove_fusion.h)

The Sensor Fusion Module uses both the Core Module and the Tracker Module to provide posi-

tion and orientation information for use in OpenGL-based augmented reality applications.

Types

• PSMoveFusion: Handle to a PS Move Fusion object.

Functions

psmove_fusion_new

Create a new PS Move Fusion object.

1 PSMoveFusion ∗

2 psmove_fus ion_new (PSMoveTracker ∗ t r a c k e r , f l o a t z_near , f l o a t z _ f a r) ;

psmove_fusion_get_projection_matrix

Get a pointer to the 4x4 projection matrix.

1 f l o a t ∗

2 p s m o v e _ f u s i o n _ g e t _ p r o j e c t i o n _ m a t r i x (PSMoveFusion ∗ f u s i o n) ;

psmove_fusion_get_modelview_matrix

Get a pointer to the 4x4 model-view matrix for a controller.

1 f l o a t ∗

2 p s m o v e _ f u s i o n _ g e t _ m o d e l v i e w _ m a t r i x (PSMoveFusion ∗ f u s i o n , PSMove ∗move) ;

psmove_fusion_get_position

Get the 3D position of a controller.

1 vo id

2 p s m o v e _ f u s i o n _ g e t _ p o s i t i o n (PSMoveFusion ∗ f u s i o n , PSMove ∗move , f l o a t ∗x ,

f l o a t ∗y , f l o a t ∗z) ;

psmove_fusion_free

Destroy an existing fusion instance and free allocated resources.

1 vo id

2 p s m o v e _ f u s i o n _ f r e e (PSMoveFusion ∗ f u s i o n) ;

121

APPENDIX B
Low-Level HID Protocol

This section describes the byte-level layout of the HID messages sent to and from the controller.

The first two messages are sent by reading or writing directly from/to the controller. All other

messages are read/sent using feature reports.

• 0x01 - Get Input (Move → Host)

• 0x02 - Set LEDs (Host → Move)

• 0x04 - Get Bluetooth Address (Get Feature Report)

• 0x05 - Set Bluetooth Address (Send Feature Report)

• 0x10 - Get Calibration Data (Get Feature Report)

123

0x01 - Get Input (Move → Host)

Offset Bytes Description Example

0x00 1 Message ID always 0x01

0x01 4 Buttons bit field

0x05 1 Trigger (first frame) 0x00 (not pressed)

0x06 1 Trigger (second frame) 0xff (fully presssed)

0x07 4 Unknown

0x0b 1 Timestamp (high byte)

0x0c 1 Battery level 0x05 (fully charged)

0x0d 2 Accelerometer X (first frame)

0x0f 2 Accelerometer Y (first frame)

0x11 2 Accelerometer Z (first frame)

0x13 2 Accelerometer X (second frame)

0x15 2 Accelerometer Y (second frame)

0x17 2 Accelerometer Z (second frame)

0x19 2 Gyroscope X (first frame)

0x1b 2 Gyroscope Y (first frame)

0x1d 2 Gyroscope Z (first frame)

0x1f 2 Gyroscope X (second frame)

0x21 2 Gyroscope Y (second frame)

0x23 2 Gyroscope Z (second frame)

0x25 1 Temperature (bits 12-5)

0x26 1 Temperature (bits 4-1), Magnetometer X (bits 12-9)

0x27 1 Magnetometer X (bits 8-1)

0x28 1 Magnetometer Y (bits 12-5)

0x29 1 Magnetometer Y (bits 4-1), Magnetometer Z (bits 12-9)

0x2a 1 Magnetometer Z (bits 8-1)

0x2b 1 Timestamp (low byte)

44 Total size (padded to 49 bytes)

When reading from the HID device, it returns a 49-byte input report containing the informa-

tion about the buttons, trigger and inertial sensors. Right now, we can only get this input report

via Bluetooth, although it should be technically possible to get the input report via USB as well.

Some values such as the temperature and magnetometer are saved as signed 12-bit values.

Accelerometer and gyroscope values are saved as signed 16-bit values. The trigger value is an

unsigned 8-bit value.

The buttons bitfield contains a bit for each pressed button. It also contains a sequence number

in the lower 4 bits of the fourth byte - this sequence number can be used to detect dropped frames.

Right now, it’s not known what the four bytes starting at 0x07 represent.

For the accelerometer and gyroscope values, two frames are contained in each report. The

first frame represents the “older” frame, and the second frame represents the most recent frame.

124

0x02 - Set LEDs (Host → Move)

Offset Bytes Description Example

0x00 1 Message ID always 0x02

0x01 1 Zero always 0x00

0x02 1 Red component of LED 0xff (full intensity)

0x03 1 Green component of LED 0x00 (green LED off)

0x04 1 Blue component of LED 0x80 (half intensity)

0x05 1 Unknown set to 0x00

0x06 1 Rumble 0xff (full intensity), 0x00 (rumble off)

7 Total size (padded to 49 bytes)

Setting the LEDs is accomplished by writing a 49-byte message to the HID device. In Linux,

it is also possible to skip the padding at the end, which improves the write performance a bit.

Both the LED color and the rumble intensity are sent in the same message. The LED color is

supplied as three unsigned 8-bit values (red, green and blue component) and the rumble intensity

is supplied as single unsigned 8-bit value.

After sending the message, the controller keeps the color and the rumble intensity for about

4-5 seconds. After that, the LEDs and the rumble motor will turn off. For keeping the LEDs lit,

it is therefore important to send a message every two seconds to keep the LEDs turned on.

0x04 - Get Bluetooth Address (Get Feature Report)

Offset Bytes Description Example

0x00 1 Message ID always 0x04

0x01 6 Controller Bluetooth address

0x0a 6 Current Host Bluetooth address

16 Total size

For the pairing process it is important to get the Bluetooth address of the Motion Controller.

This can be accomplished with this message. In addition to getting the Controller address, the

currently-set host address is also returned (it could be saved for restoring later).

This message only makes sense over USB during the pairing process. In general, it is useful

to use it before the message 0x05 (Set Bluetooth Address) to check if the currently-set host

address is different from the desired one. If the host address is already correct, updating it can

be avoided.

125

0x05 - Set Bluetooth Address (Send Feature Report)

Offset Bytes Description Example

0x00 1 Message ID always 0x05

0x01 6 New Host Bluetooth address

23 Total size

This is the core “pairing” message - it writes the host Bluetooth address into the controller.

The controller will connect to this Bluetooth address when switched on.

0x10 - Get Calibration Data (Get Feature Report)

Offset Bytes Description Example

0x00 1 Message ID always 0x10

0x01 1 Block ID 0x00 (first), 0x01 (second) or 0x82 (third)

0x02 47 Payload data

49 Total size

For reading the factory-set calibration data, this feature report has to be requested three times

in a row. Depending on the first byte of the result, the payload block position can be determined.

The controller keeps track of which payload block has been sent internally (e.g. if an application

requests only one block, the next application will get block two, three and one – in that order

– when reading the calibration data). It is therefore important to verify the block ID (at offset

0x01) to determine which block has been read.

The blocks wrap at the third block, so after reading the third block, the next request will read

the first block. Independent of the current internal state of the controller, all three blocks can be

read by getting this feature report three times in a row, and making sure to place the payload at

the correct offset.

The assembled calibration blob consists of the Message ID, the first Block ID (0x00) fol-

lowed by three payload blocks (each 47 bytes long).

126

APPENDIX C
Move Daemon UDP Protocol

This chapter describes the UDP-based Move Daemon Protocol used by the Move Daemon and

its client implementation in the PS Move API. This is mostly useful for debugging purposes of

network-related bugs, and for interoperability: Applications implementing the Move Daemon

UDP Protocol can interface with both the PS Move API Library (as server) and the Move Dae-

mon (as client). However, only the bare minimum of functionality is exposed at a very low

level (i.e. only raw data reports are sent over the wire protocol) - this is required to simplify

the implementation, avoid network traffic overhead and make sure that all calculations (like the

orientation algorithm) happen on the client, avoiding unnecessary load on the machine running

the Move Daemon.

Generic Information

The following basic information is true for the moved implementation and the current default

client implementation in the PS Move API:

• Protocol: UDP

• Well-known port: 17777

• Request size: 9 bytes

• Response size: 50 bytes

• Request timeout: 10 ms

• Request retries: 5

127

Request Packet Structure

Requests are sent from the client to the server, and have the following structure:

• Packet size: 9 bytes

• Byte 0: Request ID

• Byte 1: Controller ID

• Bytes 2-8: Optional payload

Response Packet Structure

Responses are sent from the server to the client in response to a request, and have the following

structure:

• Packet size: 50 bytes

• Bytes 0-49: Response data (message-specific)

Messages

This section lists the types of messages that the client can request. Right now, all messages are

client-initiated, which simplifies the protocol and makes sure that the moved server does not

have to keep state information around between restarts.

Request 0x01: Count Connected

• Request payload: None

• Response: Byte 0 = Controller count

Get the number of connected controllers from the remote host. If no controllers are con-

nected, the remote host returns 0. The number of connected controllers is returnd as a single

unsigned byte value as the first byte of the response.

Request 0x03: Write Data

• Request payload: LED and rumble data

• Response: None

Write data to the controller. The data layout is the same as used in the PS Move HID Protocol

for sending LED and rumble updates. No response is sent for this request, as it is expected that

the client will send many updates, and does not have time to wait for a response (lost packets

will be accounted for by simply sending another update).

128

Request 0x04: Read Data

• Request payload: None

• Response: Input report data

Read data from the controller. The data layout is the same as used in the PS Move HID

Protocol for reading input reports. The client must retry the request if no response is sent after

the timeout.

Request 0x05: Get Serial Number

• Request payload: None

• Response: Serial number as ASCII string

Get the serial number as ASCII string from the controller. The response will contain the

zero-terminated serial number of the controller as string starting from byte 0.

129

Bibliography

[1] The BlueZ Authors. Bluez, http://www.bluez.org/, 2010.

[2] Gabriele Bleser and Didier Stricker. Advanced tracking through efficient image processing

and visual–inertial sensor fusion. Computers & Graphics, 33(1):59 – 72, 2009.

[3] Derek Bradley and Gerhard Roth. Natural interaction with virtual objects using vision-

based six dof sphere tracking. In Proceedings of the 2005 ACM SIGCHI International

Conference on Advances in computer entertainment technology, ACE ’05, pages 19–26,

New York, NY, USA, 2005. ACM.

[4] Géry Casiez, Nicolas Roussel, and Daniel Vogel. 1 € filter: a simple speed-based

low-pass filter for noisy input in interactive systems. In Proceedings of the 2012 ACM

annual conference on Human Factors in Computing Systems, CHI ’12, pages 2527–2530,

New York, NY, USA, 2012. ACM.

[5] The MoveOnPC contributors. Moveonpc, http://code.google.com/p/moveonpc/, 2010.

[6] Oracle Corporation. Java native interface 6.0 specification. Specification, JNI, 2012.

[7] G-Truc Creation. Opengl mathematics library, http://glm.g-truc.net/, 2005.

[8] Leo Dorst, Daniel Fontijne, and Stephen Mann. Geometric Algebra for Computer Science:

An Object-Oriented Approach to Geometry (The Morgan Kaufmann Series in Computer

Graphics). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

[9] USB Implementers’ Forum. Device class definition for human interface devices (hid),

firmware specification. Specification, HID, 1:27, 2001.

[10] Ben Fry and Casey Reas. Processing, http://www.processing.org/, 2001.

[11] HID Working Group. Human interface device hid profile 1.0. Bluetooth SIG, 1:123, 2003.

[12] Janne Heikkilä. Geometric camera calibration using circular control points. IEEE Trans.

Pattern Anal. Mach. Intell., 22(10):1066–1077, October 2000.

[13] Kitware Inc. Cmake, http://www.kitware.com/opensource/cmake.html, 1999.

[14] Willow Garage Inc. Opencv, http://opencv.willowgarage.com/, 2009.

131

[15] D Ioannou. Circle recognition through a 2d hough transform and radius histogramming.

Image and Vision Computing, 17(1):15–26, 1999.

[16] Michael Isard and John MacCormick. Bramble: A bayesian multiple-blob tracker. In

ICCV, pages 34–41, 2001.

[17] Martin Kaltenbrunner, Till Bovermann, Ross Bencina, and Enrico Costanza. Tuio - a

protocol for table based tangible user interfaces. In Proceedings of the 6th International

Workshop on Gesture in Human-Computer Interaction and Simulation (GW 2005), Vannes,

France, 2005.

[18] G.S.W. Klein and T.W. Drummond. Tightly integrated sensor fusion for robust visual

tracking. Image and Vision Computing, 22(10):769 – 776, 2004. <ce:title>British Machine

Vision Computing 2002</ce:title>.

[19] Dawei Liang, Qingming Huang, Shuqiang Jiang, Hongxun Yao, and Wen Gao. Mean-

shift blob tracking with adaptive feature selection and scale adaptation. In ICIP (3), pages

369–372. IEEE, 2007.

[20] Jorge Lobo and Jorge Dias. Fusing of image and inertial sensing for camera calibration.

2001.

[21] S.O.H. Madgwick, A.J.L. Harrison, and R. Vaidyanathan. Estimation of imu and marg

orientation using a gradient descent algorithm. In IEEE International Conference on Re-

habilitation Robotics (ICORR), ICORR ’11, pages 1–7, 2011.

[22] SWIG maintainers. Swig, http://www.swig.org/, 2010.

[23] R. Miletitch, R. de Courville, M. Rébulard, C. Danet, P. Doan, and D. Boutet. Real-time

3d gesture visualisation for the study of sign language. 2012.

[24] Annette Mossel, Christian Schönauer, Georg Gerstweiler, and Hannes Kaufmann. Artifice

- augmented reality framework for distributed collaboration. The International Journal of

Virtual Reality, 2012.

[25] OmniVision. Ov7725 vga product brief. Spec Sheet, 2008.

[26] Alan Ott. hidapi, http://www.signal11.us/oss/hidapi/, 2010.

[27] G. Reitmayr and D. Schmalstieg. Opentracker: A flexible software design for three-

dimensional interaction. Virtual reality, 9(1):79–92, 2005.

[28] F. Remondino and C. Fraser. Digital camera calibration methods: considerations and com-

parisons. In Isprs, editor, International Archives of Photogrammetry, Remote Sensing and

Spatial Information Sciences,, volume Vol. XXXVI, Dresden, Germany, 2006.

[29] Kenn Sebesta. Repurposing the ps3 move, http://www.eissq.com/ps3_move/, 2011.

[30] Sony. Move.me, http://us.playstation.com/ps3/playstation-move/move-me/, 2011.

132

[31] Marcin Wojdyr. Fityk: a general-purpose peak fitting program. Journal of Applied Crys-

tallography, 43(5 Part 1):1126–1128, Oct 2010.

[32] Suya You, Ulrich Neumann, and Ronald Azuma. Hybrid inertial and vision tracking for

augmented reality registration. In VR, pages 260–, 1999.

[33] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22:1330–1334, 1998.

133

	Introduction
	Motivation
	Aim of the Work
	Problem Statement

	Related Work
	Intrinsic Camera Calibration
	Blob Tracking
	Inertial Sensors
	Sensor Fusion
	Existing Approaches

	Methodology
	Hardware
	Features Overview
	Pairing Process
	Tracking Process
	Tracking Algorithms
	Distance Function
	End User Interaction
	Design Decisions

	Implementation
	Architecture Overview
	Dependencies
	Public Modules
	Private Modules
	Language Bindings
	Build System
	The Move Daemon (moved)
	Controller Bluetooth Pairing via USB
	Camera Detection and Configuration

	Results
	Evaluation Setup
	Capture and Tracking Performance
	Inertial Sensor Read Performance
	End-to-End System Latency
	Performance Impact of ROI Size
	Sphere Detection in Motion Blur Situations
	Example Applications
	Integration with Other Frameworks
	Performance and Limits Summary

	Summary and Future Work
	Implemented Features
	Discussion of Open Issues
	Future Work
	Resources on the Internet

	Library API Documentation
	Core Module (psmove.h)
	Tracker Module (psmove_tracker.h)
	Sensor Fusion Module (psmove_fusion.h)

	Low-Level HID Protocol
	Move Daemon UDP Protocol
	Bibliography

